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Self-Similar Crack Expansion 
Method for Three-Dimensional 
Cracks Under Mixed-Mode 
Loading Conditions 
Three-dimensional planar cracks under mixed-mode loading conditions are investi- 
gated by using the self  similar crack expansion method with the boundary integral 
equation technique. For a planar crack under general loading (tensile and shear) 
conditions, the normal displacement and tangential displacements on the crack sur- 
face exhibit uncoupled characteristics. However, the tangential displacements in the 
two directions are generally coupled. In this paper, two coupled boundary integral 
equations for a crack subject to shear loading are solved using the analytically 
numerical method, where the integrals on elements" are estimated by using the explicit 
expression of the close form of the integrals. Combination of the self-similar crack 
expansion method and the analytically numerical method results in good accuracy, 
with errors in stress intensity factors of penny-shaped cracks and elliptical cracks 
less than one percent. This numerical analysis is applicable to the analysis of cracks 
with arbitrary geometry. 

1 Introduction 

Stress intensity factor analysis for three-dimensional cracks 
under mixed-mode loading conditions has received great atten- 
tion in the past three decades due to its importance in fatigue 
life prediction of materials and design criterion of structures. 
With the advent of computer technology, the numerical analysis 
in fracture is rapidly growing in the application of engineering. 

Boundary integral equations for three-dimensional cracks un- 
der mixed-mode loading conditions have been well established 
in the literature (Cruse, 1988; Murakami and Nemat-Nasser, 
1982; Weaver, 1977). It is apparent that for a planar crack, the 
displacements induced by tensile loading and by shear loading 
are uncoupled. Thus, a three-dimensional planar crack under 
mixed-mode loading conditions can be independently dealt with 
as a planar crack under tensile loading and under shear loading. 
However, for a crack under shear loading, the displacements in 
the two tangential directions of the crack surface are generally 
coupled. Thus, double displacement unknowns on the crack 
surface are required for the solution of the two coupled bound- 
ary integral equations. Only for some special cases, these two 
tangential displacements can be solved separately. For example, 
the material Poisson's ratio approaches zero, which has been 
discussed by Xu et al. (1998a). In this paper, the more compli- 
cated problems--cracks under shear loading with coupled 
boundary integral equations--are mainly discussed by using 
the self-similar expansion method associated with analytically 
numerical method. 

For more efficiently evaluating the stress intensity factors of 
three-dimensional cracks, Xu et al. (1997) proposed the self- 
similar crack expansion method based on the previous energy 
consideration (Cruse and Besunner, 1975; Cruse and Meyers, 

1977). In the self-similar crack expansion method, the stress 
intensity factors are estimated as the crack propagates in the 
self-similar manner. Based on the line integral technique by 
Guo et al. (1995) for the regular integrals, Xu et al. (1997) 
extended this technique to estimate both singular and regular 
integrals on the elements of cracks, and obtained the closed 
form of the integrals. The use of the present self-similar crack 
expansion method is limited to cracks in an infinite body and 
semi-infinite body under uniform loading. However, these limi- 
tations can be circumvented by using the weight function 
method (Rice, 1972) and the improved self-similar crack expan- 
sion method (Xu, 1998b). The objective of the paper is to 
extend the self-similar crack expansion method to three-dimen- 
sional planar cracks under mixed-mode loading conditions. For- 
tunately, all the integrals for the crack under shear loading can 
be estimated analytically. The calculations show good accuracy 
of stress intensity factors, with errors less than one percent 
for penny-shaped cracks and elliptical cracks as compared to 
analytical solutions. 

2 Basic Formulation for Crack Under Mixed-Mode 
Loading Conditions 

The boundary integral equations for a three-dimensional pla- 
nar crack (Fig. 1 ) can be written as 

crij(x) = f~ Sije(x, s ¢) Aue(~:)df2(x, ~:) (2.1) 

where Aue(~:) represents the displacement jump across the 
crack surface, and the functions Sue for isotropic materials are 
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S q  k - 
# 

47r(1 - / / ) r  3 {3[(1 - 2u )6or, ~ + u( 6ier,j + b)~r,i ) 

- 5r,ir,jr,elr,lnt + ni[(1 - 2u)(5;e + 3ur,er,j] 

+ nj[(1 - 2u)6ie + 3ur,er,i] 

+ ne[3(1 - 2u)r,ir,j - (1 - 4u)~u] }. (2.2) 
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Fig. 1 A planar crack in the x~-x2 plane under mixed-mode loading 
conditions 

For the typical case of a three-dimensional planar crack located 
in the xt-& plane (Fig. 1), Eq. (2.1) can be written as 

a3j(x) = f S3jk(X, ~)Auk(x,  ~)df2(~) ( j  1, 2, 3) (2.3) 
~q 

where 

S3ik - -  ,u, 
47r(1 - v ) r  3 

$333 - 1£ 
47r(1 - v ) r  3 

[(1 - 2v)6j~ + 3vr,jr,k], 

or the functions S~k can be written as 

$311 S312 5313~ 
$32t $3= $323~ - # 
$331 S332 S333// 4zr(1 - v ) r  3 

( j , k =  ] , 2 )  (2.4) 

t 
(1 - 2v) + 3v -(~- ~2 -x)2 

3u (~ - x)(r/ - y) 
F 2 

0 

(~ - X)07 - Y) i \  . . . .  - 7 - -  0 

) (~ _ y ) 2  

(1 - 2u) + 3u 7. 2 

0 

(2.5) 

It is obvious from Eq. (2.5) that the normal displacement and 
tangential displacement of a three-dimensional planar crack are 
uncoupled; i.e., the normal displacement on the crack surface 
induces the normal stress in the crack plane, and the tangential 
displacements produce the shear stresses in the crack plane. On 
the other hand, the tangential displacements in the two direc- 
tions (x and y-directions) are generally coupled. In a special 
case, the crack displacements may be uncoupled as the Pois- 
son's ratio of the material approaches zero and the right side 
of (2.5) becomes a unit matrix. Therefore, the displacements 
in the three directions can be dealt with separately. This case 

X 2 

/ /  

Fig. 2 Crack expansion similarly 
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of a crack with uncoupled tangential displacements has been 
discussed in detail by Xu et al. (1998a).  

Following the method by Xu et al. (1997b),  we may find a 
function ~3jk satisfied V2453j~ = -S3jk and thus, the integral Eq. 
(2.3) can be written as an equation with lower singularity as 

O'3j(X) = [ F3jkt(X, ~)Auk,t(#)df2(!~) ( 2 . 6 )  
2 

where function F3jk, = ~b3jk., is a differentiation of function ~3jk 
with respect to x,. These functions F3jkt have been given by Xu 
et al. (1998a). In the special case (v  = 0),  the integral equations 
of a planar crack under shear loading can be written as 

~r3/x, y) - 87r(1 v 2) 

(r/ - y )  ] 
+ - 7 - -  Auj,~da((, n). (2.7) 

These two equations can be solved separately and the form of 
the equations are similar to that of a crack under tensile loading. 
In this paper, the more complicated case, a crack with coupled 
tangential displacements, is mainly discussed. 

3 S e l f - S i m i l a r  Crack Expansion Method for Cracks 
U n d e r  S h e a r  Loading 

At a crack tip, the stress intensity factors (K.  and Kin) can 
be determined by the asymptotic field of the crack-tip displace- 
ment as 

a.0] o SSCE solution 
l - -  Analytic solution f I 

2.51----"----._~ ( IAo~ x 
v = 0,4 " 

1.0' v=O. l  

05' - ~  

0 . 0  , , , , 

15 30 45 60 7'5 0 9'00 

Fig. 4 Stress intensity factor (mode II) of a penny-shaped crack for 
various Poisson's ratios (25 × 13 elements) 
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Fig. 5 Stress intensity factors (mode III) of a penny-shaped crack for 
various Poisson's ratios (25 × 13 elements) 

U,, - -  g u ,  u ,  = - Kilt  ( 3 . 1 )  
# # 

where u,, is the crack-tip displacement in the crack edge normal 
direction and u, in the crack edge tangential direction. The self- 
similar crack expansion method simplifies the calculation of 
stress intensity factors, and stress intensity factors can be calcu- 
lated more accurately than if they were determined solely by 
the traditional method of examining the local displacement 
around the crack tip. Thus, the relationship between the energy 
release rate and the displacements on the crack surface (for 
mode II and III) may be employed. For a crack in the x~-x2 
plane under shear tractions q~ and q2, this gives 

1 
f (qlAul + q2Au2)df~ 

f v {  l - u 2  l+UK2u,}¢Sa(s)dF (3.2) 
: e K ~ " + - - - [  - 

where ~Sa(s) is the crack advance as a function of a crack-edge 
contour parameter s, and F is the boundary of the crack. For 
details of the relationship between strain energy and the energy 
release rate one can refer to Rice (1985). If a crack expands 
self-similarly (Fig. 2), the change in crack size can be written 
a s  

6a(s) = aa(s) (3.3) 

where c~ is a parameter, and a(s)  is the distance from the crack 
edge to the similarity center. The stress intensity factors around 
the crack edge can be expressed as 

g I l ( S )  = f l l ( S ) g l l O  K I I I ( S )  = UIII(S)KII  0 (3 .4 )  

where Oh(s) and f t . (s)  are distribution functions of the stress 
intensity factors, which can be determined from the displace- 
ment at the crack tip, and Kuo is a reference stress intensity 
factor of mode II at the reference point. The distance between 
the crack edge and the similarity center at the reference point 
is denoted by ao. 

For a crack under remote shear tractions qt and q2, the left 
side of (3.2) can be written as (1/2)(qffSVl + q2~SV2), where 
Vi and V2 is the so-called crack-opening volume in the x~- 
directions and x2-direction. Here Vt and V2 are induced by shear 
loading, while V~ is induced by normal loading. The crack- 
opening volume can be expressed as V = /3a~ as long as the 
three-dimensional crack expands self-similarly as described by 
(3.3). Thus, the variation of the crack volume can be written 
a s  

V3 
6V=-m6ao or 6V= 3Va. (3.5) 

ao 

Substituting (3.3) and (3.4) into the right side of (3.2) and 
using (3.5) on the left side of (3.2) yields 

3 - ~ 2 V 2  f l 
(q~V, + qJ2) - E ,~llO Jr[f ~i(s) 

1 2 )  
+ ( t  - -  U - - - - - - - ~  f n I ( S )  a(s)dF. ( 3 . 6 )  

Hence, a modified reference stress intensity factor can be written 
a s  

~.( 9 3- E(qiVi + q2V2) 

K~o : - - { - - -  ~n(s) }a(s)dV " 
l -  u 2) f r  { f i t ( s ) + ( i - Z ~  f 

(3.7) 

To obtain fil (s) and Jill (S), the relative crack-tip displacements 
Au,, and Au, need to be known. The stress intensity factors can 

K l l o .  be obtained by using (3.4), where Kno is replaced by * 

4 Numerica l  Implementat ion  and Integral Evalua-  
tion on Elements  

To evaluate the integral Eqs. (2.6), the crack can be discret- 
ized as N = m × n elements, where m is the number of 
segments in the circumferential direction and n is the number 
of segments in the radial direction as described in the previous 
paper (Xu et al., 1997). Except for m triangular elements 
around the crack center, the other m × ( n - l )  elements are 
trapezoidal elements. Displacements in the elements are ap- 
proximated by 

z2XUj = ~ NK(X, y ) A U j K ,  (4.1) 
K=I 

similar to the analysis of a crack under tensile loading by Xu 
et al. (1997). The discrete form of the integral Eq. (4.1) can 
be written as 

cr3j = f (F3jk~Nx,~ + F3j~:,iNx,~i)AujKd~2 (j ,  k = 1, 2) (4.2) 
a~ 

where AUjx ( j  = 1, 2; K = 1, 2, 3, 4) represent the crack- 
opening displacements in the xj direction at the element 
nodes, and the derivatives of the shape functions may be 
written as 

Nx.~ = Ax + Bxrh NK.,~ = CK + DK~. (4.3) 

Table 1 Normalized stress intensity factors of an elliptical 
crack under shear loading 

 lement  rror 
( a  = O) ( a  = 90 )  

13 × 7 1.934 3.20 percent 2.106 0.52 percent 
25 × 13 1.897 1.23 percent 2.105 0.48 percent 
35 × 17 1.905 1.65 percent 2.104 0.43 percent 
65 x 23 1.890 0.83 percent 2.102 0.32 percent 
Analytic 1.8740 2.0952 
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Fig. 6 Stress intensity factors (Mode II) on side CD for  a square crack (n = 0.3) under  
shear loading (45 × 13 elements) 

2.5- 
l ~  2.0- 

1.5- 
1.0- 

Therefore, Eq. (4.2) becomes 

N 
= Z Joi 

n=l 
(4.4a) 

J.j = fa {F3jk~(AK + Bxy) + F3jk,(Cr + DKX) 
n 

+ F3jk~Bx07 - Y) + F3jk~DK(( - x)}AUjKdf2. (4.4b) 

Note that for a three-dimensional crack under tensile loading 
only three functions need to be evaluated, while for the crack 
under shear loading 12 integrals need to be evaluated since 
more complicated functions F3jk, in (2.6). These 12 functions 
(11 ~ 1~2) are as follows: 

F5 , /..5 

I3 = f a  ( ~  - x ) 2 ( r ]  - Y )  d f ~ ,  1 4 = f a  ( ~  - Y ) 3  d ~ ,  
, F 5 , F 5 

ls = fa (~ - x)307 - Y) df~,16 = fa (~ - x)2(~ - Y)2df2, 
?.5 ~ 1.5 

17= fa, (~-x)(rlr 5 - y ) 3 d ~ '  18= fa0 (~ r 3- x__.............) dfL 

19=fa ( z / - Y )  dfft, l io=fa  (~-x)-------~df L 
r 3 ~ F 3 

( ~ - x ) 0 7 -  y)dr2 ,  112 ~ f (I7 -Y)2d~2, Ill = (4.5) d.  , F3 Jf~e F3 

where r = ~/(~ - x) 2 + (q _ y) 2 . The evaluation of these inte- 
grals will be discussed for both regular and singular elements. 

For integrals in the regular elements, the integrals (4.5) can 
be evaluated by line integrals as 

Ik = I_ (A~n~ + Ak, n,)dF (k = 1 ~ 12) (4.6) 
e 

where (n~, n 0) are components of the unit normal to the element 
boundary, and functions Ak~ and A~, are listed in Appendix A. 
The corresponding integrals for functions Ak~ and Ak, can be 
estimated in a similar way to Xu et al. (1997). 

For integrals in the singular elements, it is convenient to 
directly use the line integrals for (4.6). The reason for this is 
that the singular integral, defined as the Cauchy principal value 
of the integral, can be expressed as (see Fig. 3) 

f _ f ( G , , x , y ) d s -  f_ f (Go,  x,y)ds. (4.7) I =  
o 

Fortunately, the line integral on Fo is zero as the radius of Fo 
approaches 0. 

P 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 
-1.0 -0.6 -0.2 0.2 06. 

17 - X 
.._.__]=,.- 

xJa 1.0 

Fig, 7 Displacement  in the x-direction for a square crack (33 × 15 e lements)  
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Fig. 8 Triangular crack with 61 × 13 elements 

1.2 

1.0- 

2 x 

0 . 8 "  

Ida = 2.0 A 
0.6" 

0.4" 

0.2" 

0,0 
- 1 . 2  - 0 , 8  - 0 . 4  0 .0  0 .4  0 .8  via j -  

Fig. 9 Stress intensity factors of triangular cracks along AC 

The integral for a singular element near the crack edge or 
crack tip is a special singular integral which contains two singu- 
larities. However, it is still possible to transform these two- 
dimensional singular integrals to one-dimensional regular inte- 
grals which are easier to evaluate precisely. The procedure is 
as follows: 

The crack-opening displacement in the local coordinate sys- 
tem ({, r/) in Fig. 3 may be expressed in the form 

(k = 1 ,2 )  (4.8) 

where L = 42 - {3, the nodal  displacements AUkl and Auk2 
vanish because of the zero displacement condition at the crack 
edge. Equation (4.8) indicates that the displacement has a linear 
variation in the tangential (r D direction and varies with the 
square root of the distance from the crack edge in the normal 
(4) direction. The derivatives of the displacement are 

l 

Auk.e - 2 H ] L ( L  - 4 )  [(r/ - r~4)Auk3 

+ (r/3 - rl)Aue4] (4.9) 

2xu~.,~ = [Auk3 - 2xu~4] (4.10) 

where H = ~73 - ~74. On the other hand, in the global coordinate 

system (x~, x~, x~), the function ~P~3k can be written as 

E { ~  ( 4 [ -  x / ) ( 4 ~ . -  x~)} (4.11) 
~Oi3k - -  8rr(1 -- u 2) - /2 r 3 . 

Note functions qai3k satisfy V2$3jk = -S3jk and ~i3~,, = F3jk,. In 
the local coordinate system, (4.11 ) can be written as 

~i3k  -- 87r(1 - ~2) - 75 [o~,k(~ - x)  2 

+ /3ik(4 - x)(r/  - y) + %~(r] - y )2]}  (4.12) 

where 

Ogik = (Sli61k COS 2 O/ + {51i(52k sin ce c o s  c~ + ~52i(~2k sin 2 a 

tSik = --26|i61k sin a cos ce + 6Ji62k(cos 2 o~ - sin 2 0~) 

+ 262~62k sin a cos a 

"Yik = 61i61k sin 2 oe - 61i62k sin oe cos ce + 62i62~ cos 2 a. (4.13) 

In Eq. (4.13), c~ denotes the normal direction of the crack edge 
of a tip element. 

Substitution of  (4.8) and (4.12) into Eqs. (4.4) yields 

E 1 5 
J,,l = 8re(1 - u z) 2H~/L { (T14u3 - -  ~3bt4) ~ a,,,Im 

m=l 
10 15 

+ ( - u 3  + u4) Y. a,,,-,Im + (u3 - u4) Y. a,,, 5I,,, 
m=6 m=ll  

5 10 

-[- (77403 -- 731)4) Z b , , l , ,  + ( - - V  3 -~- l)4) Z bm-5Im 
m=l m=6 

15 

q'- (113 --  P4) Y~ bm-51m } 
m=ll  

E 1 5 
J,2 = 87r(1 - u 2) 2H~/L {074u3 - r/3u4) ~ bmlm 

m = I 
I0 15 

+ (-u3 + u4) Z bm-J., + (u3 - u4) 2 b.,-sL,, 
m=6 m=ll  

a's t 
~'°1 '- 

' °lg \ ",4",,   a=20 

0 . 0  0 .5  1 . 0  1 ,5  2 .0  x / a  2.5 

Fig. 10 Crack-opening displacements of triangular cracks under shear 
loading 
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Fig. 11 Stress intensity factors of an elliptic crack (b/a = 0.75) under shear loading 

5 10 

+ (~741)3 -- ~731)4) ~ Cmlm -t- (--1J 3 + 1J4) ~ era-tim 
m=l ,~ m=6 

15 

+ (v3 - v4) ~ era-tim} (4 .14)  
m=ll 

where the coefficients a~, bk, c~ for k -< 7 are 

al = - ( 1  + u 2 c o s  z a )  bl = - u 2 s i n a c o s a  

cl = - ( 1  + u2 sin 2 a )  

a2 = u2 sin a cos a b2 = --U(COS 2 a -- s in  2 a )  

c2 = - u 2  sin a cos a 

a3 = u 3 c o s 2 a  b3 = - u 3 s i n a c o s a  c3 = u 3 s i n  2 a  

a4 = - 3 a 2  b4 = --z)B(cos 2 O/ -- sin 2 a )  c4 = u6 sin a cos a 

as = u 3 s i n  2 a  b5 = - u 3 s i n a c o s a  c5 = u 3 c o s  2 a  

a 6 = - u 2 s i n a c o s a  b 6 = - u ( c o s  2 a - s i n  2 a )  

c 6 = - u 2 s i n a c o s a  

a7 = 1 + u2 sin 2 a bv = u2 sin a cos a 

c7 = - ( 1  + u2 cos / a )  (4 .15)  

and the coefficients for k = 8 ~ 10 can be given by using a~ 
= a~-5, b~ = b~ 5, and c~ = c~_5. The functions I~ (m -< 15) 
represent 15 integrals on the crack-tip elements as 

l, = J~ ( - x f~ w - Y d a  

f ( ~ _ 1 ) 3  f ( ~ _ x ) Z ( r / _ Y ) d ~ 2  

f - fa  (~ - x)rl df~ 15 = (~ _ x)(r  1 y)2 df~ 16 = 
r',/-i- c r34-UZ--g 

f y), f (e-  x)3  

111 = ff~e (~ --X)~-- ~ d ~ r 3  /12 = f ae  (77 - Y)~-7  - ~ d ~  

( (  - x)2(~7 - y ) ~ / L -  ( 
113 d~2 

e F3 

( (  - x)(~7 - y ) 2 ~  _ 
114 df~ 

~ F 3 

r ( v  - y y , / T  - Its df~ (4.16)  L e E3 

where r = ~/(~ - L/2)  2 + ~72. Among these 15 integrals, the 
first five integrals (I~ ~ 15) have higher  singularity in the inte- 
grals, while the other ten integrals (16 ~ 115) can be transformed 
to regular integrals through integration by parts. By using the 
technique by Xu et al. (1997) ,  these 15 two-dimensional  inte- 
grals can be t ransformed into one-dimensional  regular integrals. 
Where  the source point (x, y) is at the center of  the trapezoidal 
element, i.e., x = ( L / 2 )  and y = 0. The equations for the two 
sides between nodes 2 - 3  and nodes 1 - 4  (see Fig. 3) are ~7 = 
a t e  + Pt and ~7 = a2~ +/32,  respectively. By taking advantage 

O- 

-2. 

- -  Analytic solution 
1 

• SSCE solution ~ Y~o,b) 
O Tip COD solution 

X 

30 60 90 120 1~0 0 

Fig. 12 Stress intensity factors of an elliptic crack under shear loading (31 × 13 ele- 
ments) 
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of the trapezoidal geometry and integrating in the rl direction, 
these integrals can be expressed as 

Ik = Fk(Oel, fit) -- Ft(a2, f12), (k = 1, 2 . . . .  15) (4.17) 

and the functions Fe(a, fl) are listed in the Appendix B. In this 
way, all the integrals are expressed as regular integrals and can 
be precisely evaluated. 

5 Numerical Results for Stress Intensity Factors of 
Cracks Under Shear Loading 

The self-similar crack expansion method, associated with an- 
alytically numerical evaluation in the element integrals, shows 
good accuracy for the analysis of three-dimensional cracks un- 
der shear loading. A penny-shaped crack with radius a under 
shear loading 7- in the x-direction is discretized into 25 × 13 
elements. Stress intensity factors for various Poisson's ratios of 
materials are shown in Figs. 4 and 5. The least-square method 
might be used for determining displacements of Aux and AUy 
for m(n  - 1) + 1 nodes in terms of 2m × n equations on the 
crack surface. The results agree well with the analytical solution 
by Kassir and Sih (1975) where the analytical solutions for 
stress intensity factors are 

Ku - 4 r~aa cos 0, 
(2 - u),f7 

4(1 - v) 
Ku, (~ = ~  r,/a sin 0. (5.1) 

Stress intensity factors of the crack (u -- 0.3), Ku at points A 
(0 = 0 deg) and K.= at point B (0 = 90 deg) for 65 × 23 
elements are KH = 2.3655r~/ahr and K m =  1.6578r~/a/~- as 
compared with the analytical solution 2.35294T a ~  and 
1 .64706zx /~ .  The errors are less than one percent. 

The stress intensity factors of an elliptical crack at the points 
A and B with axis ratio b/a  = 0.8, u = 0 under shear loading, 
the calculation shows high accuracy of stress intensity factors, 
with errors less than one percent as more than 65 × 23 elements 
are used. The analytical form for an elliptical crack with axis 
length a and b (a > b) under uniform shear loading in the x- 
direction is 

× 
k 2 c o s  ce 

[(k 2 - u ) E ( k )  + ukZK(k)] (b  2 cos 2 a + a 2 sin 20~) T M  

K m =  r(  rrab ) l/2 

( 1 -  u)k 2 s i n a  
× 

[(k 2 - u ) E ( k )  + ukZK(k ) ] (b  2 cos 2 a + a 2 sin 20l) 1 / 4  ' 

(5.2) 

Functions K ( k )  and E ( k )  in (5.2) are the elliptic integrals of 
the first kind and the second kind, respectively, k = 
~/1 - (b la )  2 and kl = bla.  

For a rectangular crack under shear loading in the direction 
parallel to the x-axis, stress intensity factors K~ on the side CD 
is shown in Fig. 6. Displacements in the x-direction (along the 
x-axis) are shown in Fig. 7. 

For triangular cracks with various geometry (h /a  = 1, ,[3, 
2) under shear loading r in the x-direction, the discretized ele- 
ments for a triangular crack with h/a = ~ / 2  are plotted in Fig. 
8. Normalized stress intensity factors along the crack edge AC 
are shown in Fig. 9, where AC = 2a, and AB = BC = 

+ h 2 . Also as plotted in Fig. 10 are the crack-opening 
displacements along the x-axis for triangular cracks with various 

ratio of h/a.  It is interesting that for the crack with three equiva- 
lent sides of length (h /a  = ~ / 2 ) ,  the maximum displacement 
is at the center of the triangular crack. However, it may not be 
true for all other kinds of triangular cracks. 

6 Conclusion and Discussion 
Stress intensity factors for three-dimensional cracks under 

shear loading can be accurately calculated by using the self- 
similar crack expansion method, associated with the analytically 
numerical evaluation of the cracks. In general, the boundary 
integral equations for cracks under shear loading show coupled 
characteristics. The unknowns on the crack surface will be dou- 
bled as compared to the cracks under tensile loading and thus, 
a rational treatment of the problems may require more efforts 
in the numerical analysis. 

For the boundary integral equations of three-dimensional 
cracks under shear loading, the regular and singular integrals 
on the elements of the crack surface can be evaluated by using 
the explicit expressions of the closed form. However, more 
functions need to be estimated as compared with cracks under 
tensile loading. By using the self-similar crack expansion 
method, the accuracy of the cracks under shear loading is com- 
parable to that of the cracks under tensile loading, with errors 
in stress intensity factors around the crack edge less than one 
percent. 

The self-similar crack expansion method generally gives bet- 
ter values of stress intensity factors than the conventional 
method (tip crack-opening displacement method) where the 
stress intensity factors of a crack are directly obtained from the 
crack-openifig displacement by using (3.1). Figures 11 and 12 
show the stress intensity lhctors obtained by the tip crack-open- 
ing displacement method and the self-similar crack expansion 
method in comparison with the analytical solution. The self- 
similar crack expansion method provides more accurate results 
than the tip crack-opening displacement method for stress inten- 
sity factor analysis. The use of the present self-similar crack 
expansion method is limited to cracks in an infinite (including 
semi-infinite) body, and is also limited to cracks under uniform 
loading. The first limitation can be circumvented by using the 
improved self-similar crack expansion method (Xu, 1998b), 
and the second limitation can be circumvented by using the 
combination of the weight function method (Rice, 1972) and 
the self-similar crack expansion method. 
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A P P E N D I X  A 

F u n c t i o n s  AK~, A g n  ( K  = 1,  2 ,  3 ,  . . .  1 2 )  

A~ : ~ 73 + r5 , 

Ash = ~ r5 

A7£ = "~" 

1 ( ( ~ - x ) 3 ( r / - y )  ( ~ - x ) ( ~ - y ) }  
At~ = ~ r5 + 2 r3 

1 ( (  - x) 2 (~ - x ) ( r  1 - y )  
ABe = - - + ~  As~ = F Y 3 F 3 

1 { ( r /  -- Y) 2 ( ' - x ) 2 ( ~ ] - Y )  2 ) 

A2~ = - ~  ~ r5 ' A9~ = ( ~ - x ) ( r / - y )  Ago = - 1 + (r/-y)________~ 
F 3 r r 3 

- I l l .  x_~___ ( { -  x)(r/ _y)2  3 ( ( -  x)(r~ _ y ) 4 ]  
m7~ = - i 5  + r 3 - r 5 

1 (~  - x ) ( r  1 - y )3  1 (~  - x) 3 
A2o = ~ r5 Aloe = ~ + r3 

- 1 { 2 ( r / - y ) +  ( ~ - x ) 2 ( r / - y ) }  1 (~ - x)3(r] y) Alo, = ~ r 
A3~ = 3 r 5 ' r 3 

1 (r? - y________) + (~ - x)ZO? - y)  
A2~ = - ~ 73 r 5 ' Ai,~ = ~ r r 3 

1 ( (~  -- x)(r] -- y) 3 (( - x)(r/ - y)} 
A4~ = ~ r5 + 2 r3 , 

1 ( ( ~ - x ) +  ( ~ - x ) ( r / - y )  2} 
Allr/  ~ 3 F F 3 

1 07 -- y )2  + ( 7  -- y)4 Al2~ ~ r 
A4o = ~ r3 r------V---- = + r3 

As~ = -~- ~ +  (~ - x)2(r~ - y) _ 3(( - x ) 4 ( n  - Y)I 
F 3 F 5 J 

1{(77 - y ) 3  } 
Aj2~ = ~ r 

A P P E N D I X  B 

F u n c t i o n s  Fro(a, f l )  ( m  = 1 ,  2 ,  3 . . . ,  1 5 )  

+ L J 

ro[ro+ + Io 1 

]21g(3  + 2 ~ )  

a~ 
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-2  1 

2 2  '13/L ) 
F3(o~, 1 3 ) = ~ F , -  ~ [ - ~ -  ~ - rS 

2 {~r~ fo' [ ~ /1 -~ (2~-  l) F~(o~,/3) = - ~ + r3 ~/1-~3(~-r  5 1/2)2Pld( } 

Fs(o~, 13) = Fi(a, 13) - F3(~, 13) 

{ 1 f ~ - S - ~  ~ / i - ~ ( , -  1/2)Pd~} 
F 6 ( o t ,  f l )  = 2~/L ~ro - r 3 ; 3  

L ro -~o- - -~]  ~ (c~ + 13/L)p _ p + eer 
r 3 r(r + a~ + 13/L) 

7 p - ar I 
F(r -'-~--- ~/L) Jd~ 

L\  ro / r 3 
-3(°e~+13/L)3P]d(}r5 

{[' ' l lo  [ -; 1 F,o(~,/3) = 2~/-{ 2ro 2Z~r 3o + ~ (~ --r ~l/2)z (~ - r'l/2)3P rl + (~ /2)p d~ 

{ f/~/1-~ (__~ )fo'-(a/2+13/L)2- 1/2(1 +a2)(+ 1/2(a2- 1)+2a13/Ld~ F,,(a,/3) = ~/L a d~ + sgn + /3 

F'2(~'13)=-'JL{fo '~/1 r - ~ d ~ }  F,3(oz, 13) = T ~ fo' (~ - 1/2)2~/lr 3'2 - ~ d~ 

F , , ( ~ ,  ~) = 
3 

d~ 

where 

r =  - + o~+ ' r ° = 2  L 

and sgn (x), the sign function, is defined as 1 when x is positive and - I  when x is negative. 
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The Elastodynamic Green's 
Function for a Torsional 
Ring Source 
The elastodynamic Green's fimction for a torsional ring source in a homogeneous, 
linear elastic medium is derived using the Fourier-Hankel transform. The Green's 
function is found to possess the same logarithmic singularity as the Legendre function 
of half-degree of the second kind. 

Introduct ion 
Magnetostrictively generated and detected torsional modes 

have been proposed and tested for ultrasonic pipe inspection 
(Mohr and HNler, 1976; Kwun and Teller, 1994). Here, magne- 
tostriction refers to the physical phenomenon that when a ferro- 
magnetic or ferrimagnetic material is magnetized, its dimen- 
sions change (Cullity, 1972). The lowest torsional mode has a 
unique property in that it propagates at the shear wave velocity 
and is nondispersive, while the second lowest torsional mode 
has the largest displacement near the external and internal sur- 
faces. 

When there are only axially symmetric scatterers like welds 
or circumferential cracks, the incidence of torsional waves re- 
sults in torsional waves only, even though the mode amplitude 
may change and new torsional modes may be generated. In 
this case, numerical calculations can be greatly simplified if an 
elastodynamic Green's function for a torsional ring source is 
available and used. The elastostatic Green's functions for ring 
sources and corresponding integral equations for axially sym- 
metric elastostatic problems appeared in the 1970s (Kermanidis, 
1975; Cruse et al., 1977; Mayr et al., 1980; Hartmann, 1989), 
where the Green's functions were expressed in terms of either 
half-order Legendre functions or complete elliptic integrals. The 
elastodynamic Green's functions for ring sources, however, do 
not exist. 

We report here the derivation of the elastodynamic Green's 
function for a torsional ring source using the Fourier-Hankel 
transform. The Green's function is found to possess the same 
order of singularity as the Legendre function of half-order of 
the second kind. 

The Green's  Funct ion for a Torsional  Ring Source  
Consider an axisymmetric torsional ring source in the cylin- 

drical coordinate system (r, 0, z), where the ring source is 
located at r = r ' ,  z = z'. Since we study only axisymmetric 
problems, there is only one nonvanishing displacement, ue(r, 
z), polarized in the 0 direction. The equation of motion for 
uo(r, z) is 

( ' ) V 2 -  ~5 + k~ uo(r,z) = 0, (1) 

where kr = co/Cr is the shear wave number, Cr = ] ~ p  is the 
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shear wave velocity, # is the shear modulus, p is the density, 
co = 27rfis the circular frequency, f i s  the frequency, and 

V 2  1 0 ( 0 )  0 2 
= - - -  r + - -  (2) 

r Or Or OZ 2" 

The equation of motion for the Green's function, Go(r, z; r', 
z ' ) ,  can be written as 

1 ) r', V 2 - ~  + k~ G;(r ,z;  z ' )  

1 6(r '  - r )6(z '  - z) 
= - , ( 3 )  

# r 

where 6@' - r )6(z '  - z ) /r  represents the torsional ring source. 
We use the Fourier transform for the axial coordinate z, and 

the Hankel transform for the radial coordinate r. The Fourier 
transform is defined as 

'L Go(r, z; r', z ' )  = ~ G~(r,  7; r', z')eiVZdT, (4a) 

G~'(r, rl; r', z ' )  = f ~  Go(r, z; r', z ' ) e  i~Zdz, (4b) 

while the Hankel transform is defined as 

G~(r,  ~7; r', z ' )  = G~(~, rl; r', z')JitCr'~d"t~ )~ ~, 

Cy ( ( ,  7; r', z ' )  = fo ~ G~(r,  7; r', z ' )J l (~r)rdr ,  

(Sa) 

(5b) 

where ~ and ~ are transform parameters. We obtain 

G~f(~, r]; r', z ' )  = e -'~z J l ( ( r ' )  (6) 
u [ 7 2  _ ( ~  _ ~ 2 ) ]  • 

Substituting Eq. (6) into Eq. (5a) and Eq. (5a) into Eq. 
(4a), and using the residue theorem, we obtain 

i f ~  e ilz-z'lq~-S7 = - -  - S - =  ~ 2# k~r- ~ J l ( ( r ' ) J l ( ( r ) ( d ( ,  

Go(r, z; r', z ' )  

(7) 

( 8 )  

where 

I m ( v ~ -  (2) > O, 

in order to satisfy the radiation condition. 
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7ri e~{,i/2) H~ l) ( ze{~i/2)) ' 7r To integrate Eq. (7), we first rewrite the product of Bessel K~(z) = - -  -Tr < arg z < ~ ,  (13) 
functions Ji (~r)J1 (~r')  as 2 

J l ( { r ) J t ( { r ' )  

= J1 + r ' 2 '  jj {~/~5 + r '2 _ _  . 

We can then write (Bailey, 1936; Erd61yi et al., 1953): 

Ji (~r)J1 (~r')  

~ 1 (~  ,r_._._' ~2,,+Ij2~+L(~/r2 + r'2). 
,,-o n!(n + 1)! ~ /  

(9) 

(lO) 

Substituting Eq. (10) into Eq. (7), utilizing Eq. (8), and 
noticing that the integral variable in Eq. (7) is ~, we obtain 

1)! 

fo e-lz-z'lx[('-~;~2"+2.J2,,+,(~ + r '2)d( .  (11) × 

To evaluate the integral in Eq. (11 ) we let z = - i y ,  then the 
identity (Watson, 1952) 

f f  J , (bt)  K m ( a ~  + z 2) t,,+ l dt (t 2 + z2) m/2 

- K .  . . . . .  1 ( z a ~  + b 2) 
a m Z 

becomes 

f o j , , ( b t  Km(aX/~ - y2) t "+ ( t  2 _ y2),n/2 l d t  

b " (  a ~ + b  2 ) . . . . .  1 
= - -  i K, ...... l ( - i y  a~+ b2), a m y (12) 

where H~ 1) is the Bessel function of the third kind, 

n(_~2(z) = eO~'H~')(z) 

~ Z  z Ki/2(Z) = - -  e 

if we let m = ½, then 

(14) 

(15) 

e_a~7-7 
f J,,(bt) ~ t"+'dt 

n - -  (1) 2 = t" 7r b ~ H,,+j/2(yxfa 5 + b 2).  (16) 

Using Eq. (16) and letting a = Iz - z ' l ,  b = ~ +  r '2, t 
= ~, y = kr, Eq. (11) can now be integrated to yield 

i ~r~., ~ 0 1 G o ( r , z ; r ' , z ' )  = ~  , n! (n  + 1)! 

( krrr' )2,,+3n 

× z '  12 r 2 2x/Iz - + + r '2 

(l) + + (17) • H2,,+3/2(krx/Iz- z'[ 2 r 2 r '2).  

The Green's function, as expressed by Eq. (17), can now 
be evaluated as accurately as numerical algorithms permit, 
but it is still not satisfactory for two reasons: It is difficult 
to see whether the function is singular at r = r ' ,  z = z' .  If 
it is, it is still difficult to see what kind of singularity it 
possesses. In order to arrive at a better expression for the 
Green's function, we use the identity (Abramovitz and 
Stegun, 1972) 

~ z  e~Z J~=o ( n + k ) !  ( ~ z )  k 7r (l) i-" . (18) 
- . + , , 2 ( z )  = - 

I Z  = 

Substituting Eq. (18) into Eq. (17) then yields 

1 e '*~+~+~'' ~ 1 ( krrr' )2.+1 
aq(r, z; r', z ')  = 27 ~/Iz 5z--~l~ 7 r "--~ ÷ r '2 n~O n!(n + 1)! 2i~/IZ -- Z'I 2 + r 2 + r '2 

'k=o k.]~-n + 1 - - k i !  2kr~[Iz - z ' l  2 + r 2 + r '2 

1 e ikSS7%+r'+''' n~ ° (4n + 2), 1 ( re' )z,+l 
=2-~x/[z_-z , l ---STr-S+r,2 n ! ( n + l ) ! ( 2 n + l ) ! 2 2 , , + ' : 2 2 , , ~  I z - z ' l Y T r 2 + r  'z 

,2 nI(n  + 1)! 2i~/Iz-  z '[: + r 2 + r '2 + 2U4IZ  -- Ztl 2 + r 2 + r ,=o • 

~ ( 2 n +  1 + k ) l  ( i )k 

"~=ok!(2n÷l-S~! 2kw,/Iz-- z,l~ + r= + r'2 
(19) 

where Km(Z) is the modified Bessel function of order m of the 
second kind. In Eq. (12), a and b are arbitrary constants. 

Since (Lebedev, 1972) 

We observe that for elastodynamic problems, the singular 
term of a Green's function must be independent of the wave 
number. An inspection of Eq. (19) reveals that the summation 
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in the first term on the right side of the equation is independent 
of the wave number kr. 

Using mathematical induction, we can prove that 

(4n + 2)! 
= { 1 . 5 . 9 . . .  

22n+l(2n + 1)t 

(4n + 1)} { 3 ' 7 . . .  ( 4 n -  1 ) } , n  = 0, 1 ,2  . . . . .  (20) 

But (Lebedev, 1972) 

C o n c l u s i o n  
The elastodynamic Green's  function for a torsional ring 

source is derived rising the Fourier-Hankel transform. The sin- 
gular term of the Green's function can be expressed as a func- 
tion of Legendre function of half-degree of the second kind. 
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~ r ( l + ½ )  15 3 l \  
Qll2(x) = 3/2 F / -  • 2; ) F ( 2 ) ( 2 x )  \ 4  ' 4  ' ~5 

{ 1 " 5 " 9 . . .  (4n + 1)} {3"7"11 . . .  (4n - 1)} ( 1 X 2n+1+1/2 
= 7r =-0 nt(n  + ~).-~L,;[ \ 2 7 /  (21) 

where Q 1/2 (z) is the Legendre function of degree ½ of the second 
kind and F(a ,  t ;  y; z) is the hypergeometric function. There- 
fore, we can decompose the Green's function into a singular 
term, G~(r, z; r', z ' ) ,  and a regular term, G~(r, z; r', z ' ) ,  as 

Go(r, z; r', z ' )  = G~(r, z; r', z ' )  + G~(r, z; r', z ' ) ,  (22) 

where 

G~(r, z; r', z ' )  

= e'k/7-7-qrr' ...... 2 ( iz _ z,[2 + r2 + 
2re# r---: • Q|/2 (22a) 
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Solution of Impact-Induced 
Flexural Waves in a Circular 
Ring by the Method of 
Characteristics 
A study of elastic wave propagation in a curved beam (circular ring) is presented. 
The governing equations of motion are formulated in two forms based on Timoshenko 
beam theory. Solutions are obtained using the method of characteristics, whereby a 
numerical scheme employing higher-order interpolation is proposed for the finite 
difference equations. Results obtained are verified by experiments; it is found that 
use of the higher-order numerical scheme improves correlation with experimental 
results. Comparison of the relative accuracy between the two mathematical formula- 
tions--one in terms of generalized forces and velocities and the other in terms of 
generalized displacements--shows the former to be mathematically simpler and to 
yield more accurate results. 

Introduction 
Unlike solid continua, transmission of elastic stresses through 

cellular structures such as honeycombs and tightly packed tube 
and ring arrays, is effected by propagation along the walls of 
constituent cells. One simple two-dimensional idealization of a 
cellular material is an array of rings, which Stronge and Shim 
(1987) subjected to impact deformation. In seeking to under- 
stand how impact stresses are transmitted through such arrays, 
it is instructive to examine the types of stresses generated in a 
single ring and their propagation characteristics. 

General two or three-dimensional theory for the analysis of 
wave propagation in beams--e.g.,  that by Pochhammer-Chree 
(Abramson et al., 1958) - - i s  mathematically too complex for most 
practical applications. It has been demonstrated that one-dimen- 
sional Timoshenko beam analysis (Graft, 1975) is suitable for the 
study of stress propagation in straight beams (Goland et al., 1955; 
Kuo, 1961; Aprahamian et al. 1971; Ripperger and Abramson, 
1957; Shim et al., 1992). Application of Timoshenko-type theory 
to wave propagation in curved beams has been undertaken by 
Morley (1961) and Graft (1970). The difference between their 
analyses was the reference axis chosen--Morley selected the neu- 
tral axis whereas Graft used the centroidal axis. This results in 
different forms of the governing equations and the predicted veloci- 
ties also differ slightly because of this. Both analyses predicted 
three modes of wave propagation--radial shearing, longitudinal 
extension, and flexure. Radial shearing has the highest wave speed 
while the flexural mode is slowest. 

The validity of Morley's approach to curved beams has been 
verified by Phillips and Crowley (1972) and Crowley et al. 
(1974), who conducted photoelasticity experiments on wave 
propagation in 90-deg elbows of rectangular cross section and 
constant curvature. Axial force and bending moment pulses were 
applied at one end of the elbow and bending moment, axial and 
shear force distributions along the elbow at different times studied. 
However, the response to radial loads was not examined. 
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This study investigates the use of classical Timoshenko analysis 
and solution by the method of characteristics to radial impact on 
curved beams. The appfication of a concentrated load (bending 
moment, axial, or radial force) introduces discontinuities in gradi- 
ents of the displacements--axial extension (u), radial displacement 
(w), and cross-sectional rotation (~) .  Discontinuities in the dis- 
placement gradients propagate along characteristic lines which may 
or may not coincide with lines defining the mesh network normally 
employed for solution by the method of characteristics (Chou and 
Mortimer, 1967; Mortimer and Hoburg, 1969). Treatment of dis- 
continuities along lines not conforming to the standard characteristic 
network is complicated. A radial load modeled as a concentrated 
shear force produces a discontinuity in the radial displacement 
gradient which propagates along a characteristic not coincident with 
the standard network. For situations involving three different wave 
propagation modes, as in the present study, the numerical solution 
procedure is significantly more complex. The present investigation 
overcomes this difficulty by approximating the concentrated shear 
force by distributing a force linearly over a small segment of the 
beam to eliminate all displacement gradient discontinuities. This 
study utilizes a one-dimensional theory based on Morley's (1961), 
with spatial location as the independent variable, to examine the 
response of circular tings to radial impact. 

Assumptions and Governing Equations 
Figure 1 illustrates an element in a curved beam; the circum- 

ferential and radial displacements (ff and ~v) are described by 

Fig. 1 Displacements in a curved beam segment 
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if(0, t, r) = u( O, t, RN) -- 449(0, t) ( l a )  

vT(O, t, r) = w(O, t, RN) ( lb )  

where u and w are the circumferential and radial displacements, 
respectively, at the neutral axis 

is the radial distance from the neutral axis (i.e., r = RN + 
~), 

RN is the radius of curvature of the neutral axis of the curved 
beam, 

4, is the rotation of the cross section. 

The strain-displacement relations in polar coordinates are 

1 0 ~  ~v 
e00 = -r 00 + -r (2a) 

10vg 0ff ff 
Y~o = - - - + - - - - .  (2b) 

r O0 Or r 

Substitution of the kinematic relations ( 1 ) into Eq. (2) yields 
the following strains: 

_ l ( + ~  0 0 - 0 0 0 4 9 )  e00 -77 - ~ 7-: + w (3a) 

l(0w ) 
Y,o RN + ~ - ~  -- u + ~49 -- 49. (3b) 

Assuming the plane stress (O'rr = O'zz = 0 ) ,  Hooke's law results 
in 

croo = Eeoo (4a) 

"7-rO = K G T r  0 (4b) 

where J¢ is the shear correction factor. 
With respect to a beam cross section, Eqs. (4a) and (3a) 

combine to yield the axial force in a cross section: 

N =  ~7 oodA = --~N --~ + W . (5) 

Equations (4b) and (3b) provide the shear force 

V= fz~-,odA =tcGA[~N ( - ~ - u )  -49 ] • (6) 

Similarly, the bending moment is obtained from Eqs. (4a) and 
(3a): 

= fm ~roo~dA = EAe 0__~_.00 (7) M 

The above expressions are obtained based on the following 
identities for curved beams (Boresi et al., 1993): 

fA dA A a n d f a ~ d A  O. 
RN + ~ RN RN + 

With reference to Fig. 27 the resulting equations of motion 
a r e  

~- N+SN 

ON 
RoTs  + V = p A { ~ t ' ( R N + e ) - ~ [ e ( R N + e ) + h 2 ] }  (8a) 

OV 
Ro -~s - N + RNq = pff~A(R^, + e) (8b) 

OM 
R o - ~ s  + R N V  = p { i i A [ e ( R N  + e) + ~2] 

_ ~pA[RN(e 2 + -~2) + e(3~2 + e2)]} (8c) 

where 

e is the distance between the neutral axis and the centroid of 
the cross section, 
Ro is the radius of curvature of the centroidal axis, 

is the radius of gyration of the beam cross section about the 
centroid, 

f A ~ d A = e A ;  fA~2dA = A ( h 2 + e 2 ) ,  s = RoO; 

and 

fA ~3dA = + eA(3h 2 e 2 ) 

for cross sections that are symmetrical about the vertical through 
the centroid. 

The variables are nondimensionalized according to 

s u* u w* w N .  N 
s* = ~ ,  = ~ ,  -h' EA'  

V M 
V* = - -  M* - 

EA EA-h 

-h RN t * e t q .  qh 
fl Ro ' u  Ro' h EA'  

E m 
k KG , C = ~ • 

The governing equations can thus be expressed in terms of 
generalized forces N*, V*, M* (axial and shear forces and 
bending moment) : 

1 ON* + _ V *  - d)* + ceil . . . .  "" (9a) 
Ol O S * Ot 

1 0 V *  f i N *  + q* = - 1  ¢0" 
Ol OS * Ol Ol 

~-a OM____~Os, + flV* = -t~* + ceil /3 

(9b) 

N* - 10u* + /3 w* (9d) 
Ol OS* 

1 049___~ ( 9 f )  
M* = ~7 (1 - ce) Os* 

Fig. 2 Forces acting on a curved beam segment An alternative set of governing equations can be formulated 
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in terms of the generalized displacements u*, w*, and qS*, by 
eliminating N*, V*, and M*: 

1 02~1 * 1 02bt  * ( ~  1 ~ )  02th * 

Ol 2 0 S  .2 Ol Ot .2  + + 4t3 Ot .2 

+ /5 1 + - -  u * -  = 0 ( lOa) 
42 Os * a 2k 4k 

( })0., 1 02w * 1 02w * 15 1 + 
42k Os .2  ty Ot .2 a 2 Os* 

(1 - a )  02q5 * 

415 OS .2  

1 Orb* t52 
w* = - q *  (lOb) 

4k Os* 4 2 

3 ~ + ~ 1  + - - 2 1 5 -  
4 4 3  15 Ot .2 

(_~ 1 ~ ) 02u 150w*  32 15 
+ + 413 150t *---5 + u* - ak  Os* ak  k q~ = O. 

( lOc)  

Both nondimensionalized sets of governing equations contain 
two parameters, 15 and a, which influence wave propagation in 
circular rings. 15 quantifies curvature, which increases with the 
value of 15; a zero value corresponds to a straight beam. The 
parameter 4 defines the offset between the neutral and centroidal 
axes of the cross section; the larger the curvature, the larger the 
offset, while 4 = 1 corresponds to a straight beam, in which 
the neutral and centroidal axes coincide. The value of 4 also 
depends on cross-sectional shape and on 15. Rings of identical 
curvature (15) but different cross section have different values 
of a. 

k = 

3a ( l  - a )  
4/3 z - a  2 + 2 a -  1 

For isotropic materials, the corresponding values of k are 

(3152 + 2 a -  4 2 -  1)(1 + v )  

4(1 - 4) 

for a rectangular cross section 

and 

k =  
2(4152 - a 2 + 2a - 1)(1 + v)  

3a(1 - a )  

for a circular cross section. 

Solution by the Method of Characteristics 

The systems of Eqs. ( 9 a -  f ) and ( 10a -  c ) are solved numeri- 
cally using the method of characteristics. The general approach 
adopted is similar to that used by Chou and Mortimer (1967) 
and Plass (1958). However, the present numerical solution 
scheme differs in several aspects, a major one being the use 
of higher-order interpolation, which is found to yield better 
correlation with experimental results. Both forms of the govern- 
ing equations are solved, because although they are mathemati- 
cally equivalent, they generate differences in the numerical re- 
sults obtained. 

Generalized Force-Velocity Formulation. Derivation of 
the characteristic lines and equations in this formulation is 
achieved through matrix diagonalization and manipulation of 
the equations of motion, the details of which are described by 
Quah (1994). Three pairs of characteristic lines are obtained, 
each pair corresponding to a mode of wave propagation. These 
characteristic lines and their accompanying characteristic equa- 
tions are defined by the nondimensionalized wave speeds: 

c~ = { ( 1 -  2a/32 - a + 315z) + ~ ( 1 -  2a132 - a + 3152)2 - 4 a 1 5 2 ( 1 - 1 5 2 ) ( 1 -  °e) } - 4 )  ( l l a )  

2(1 - a )  ( l l b )  

( l l c )  

For a rectangular cross section, 

4 = 15fi5/1. (J + 

For a circular cross section, 

, 152 4 = ~ +  - -  . 

The parameter k is defined as E/(KG) ,  with the shear correc- 
tion factor K relating the cross-sectional shear force to the shear 
strain at the neutral axis. 

For a rectangular cross section, 

K = 
2 a ( 1 -  a )  

3152 + 2 a -  4 2 -  1 ' 

For a circular cross section, 

where cl* > c2" > c~. 
Along the characteristics ds*/dt* = ± c ~, 

+_4 15 + 4 - 7 - 5  

-- t5 + t ~ 1 5  c * 2 ~ * d t  * = O. 

Along the characteristics ds*/dt* = +_ c* 

(12a) 
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1 
oil5 ~)c~<2dN* + ( c 2 " 2 - ~ )  dM* 

(1 - a )  

1 

( ~ l ~ ) c ~ 2 v i , * d t * = O .  
- B + o~,~ 

Along the characteristics ds*/ dt* = _+ c ~ 

dV* 7- c~dv~* -7-/3c~N*dt* + -~- a , a t *  
cek 

(12b) 

1 ° 

+ ~ch*dt* +_ c*q*dt* = 0. (12c) 

These three pairs of coupled equations can be written in finite 
difference form along their respective characteristics. Figure 3 
shows a characteristic mesh in the t* - s* plane. The intersec- 
tions of the characteristics, ds*/dt* = +-c*, define the nodes 
of the mesh. Figure 4 (a )  shows a typical element in the mesh 
on which the computation scheme is based. The quantities, N*, 
V*, M*, a*, v~*, and ~* at points A, B, C, A2, B2, C2, A3, 
B~, and C3 are identified by their respective subscripts. All the 
quantities at point P are unknown and have to be computed 
from known values at the neighboring points A, B, and C. The 
solution thus requires the evaluation of the following system of 
simultaneous equations: 

2c~ qL = q~ + - - ( q Y - q ~ )  
~r + ~] 

2 c ~ :  q~3 = q~ + - - ( q ~  - q~) 
~ + ~] 

(14) 

Quantities such as vi~ 2, aj~, wJ~i,.W~, .~j~, 45J~3, NIP2, N~,, 

V 3~, M3~, and M3~ are evaluated in the same manner. Figures 
.4(b) and 4(c)  show generic elements adjacent to the t*-axis 
and the line RS (Fig. 3), respectively. For an element adjacent 
to the t*-axis, only the equations for the negative characteristics 
are needed for the computation of values. Similarly, an element 
adjacent to the line RS requires the equations for the positive 
characteristics. In both these cases there are insufficient equa- 
tions to solve for the six unknowns N~, V ~, M~, ~/~, ~ ,  
and &~. Three more independent equations are needed for each 
of the two cases. These additional equations are obtained from 
boundary conditions; e.g., a free boundary has N~ = V~ = 
M~ = 0. For a circular ring subjected to radial impact, symme- 
try boundary conditions are formulated to reduce the problem 
to that of half the ring, whereby V ~ = / i~  = ~ = 0. For initial 
conditions with a point load at O (Fig. 3), the solution process 
commences with computation of the unknowns in the lowermost 
element OUV and proceeds progressively upwards to adjoining 
elements. This procedure is utilized with the boundary and load- 
ing conditions shown in Fig. 5, in which a point load pulse is 
approximated by a linearly distributed force applied over a small 
ring segment of length 6s* (Fig. 5) and which has a triangular 
time variation. Displacements are computed by integrating the 
velocities; e.g., u* is evaluated from (Fig. 4 (a ) )  : 

u~ = u~ + & * ( a ~  + a ~ )  ( i s )  

o+ ,____, ~<:, :~" [a(_o+__, ___,)<:, +<:. ___, ]<: ,.~._, _¢_a +±___, ),: _ ~ '  ¢_~+±_ '--/<:-' 
L,~ '~SS SS) ~ - [  L ,~ ,~SS SSJ ~]  ' 7 t,~ ,~t~ /37 2 t<~ ,~s3 ~Jj 

d~+~-±~ , ' -  a~'p,CSS ~ ,~ . . . .  , ] .  (~_+± '_~. _ss~'(a__+'_L_'_],:~. 0-:)(<.,_±] 
t<~ ~SS SSJ -T[~' tT+~-TJ<"+<"-TJ <' <:._l a [ a  ass ssf '  2 t a  ass ss) ss'<; t '  ~J 

:( a_ + m_ __, , + ss~ T [ss {7+~-T)  ' " < r o s s  , ,) .,+<;:_.}]<; <,;._g _f_~+_._, __, ]< ;Ca -ss , ;  _ sse,;~_ C:(-a +±_±],:.,,ss , ~  - ~--~-=-0-<~)rss<2 t-<a-g)" 

</a +±_±]<:2t<~ =n a) -  _a<;[a(a+±_±]<,;,+<;2_±[;.~Lt<~ ass fl j  a j  e;:~-~ I-~ (ss+ ''~fl'-7~:l)" _ S S ~ ; ( ~ . + i . i _ i ) c ; , 2  Ca <xfl fl) (l-~Q(c*2- ! ' ) S S ~ e ;  I -* a) 

_ ssa; <; ~ o ss~; -<; &__L; 
2 2ak 2k 

SS~; c; 1 0 SS&; c; &-~- 
2ak 2k 

/3 1 I ~ . a & *  13 1 1 ~2 o, 1 . . . .  1 . SS 1 1 . . fl&* SS 1 l ,4 , ( l - a )  .2 1 .. [ g-+-_-)c,  .A---[ss¢-+---l<, +<, _-]~,v: +¢~, _-/M -¢-+---/<,~ +--¢-+---/<-~ __~_. ¢~ __~ 
/ t.,~ an SSJ 2 [t.,~ <~n SSJ ~ ] "  t ,,) A ta  ass t~J " 2 ta  ass n ) '  " n'~, t . '  a J *  

f l  1 1 . , a & '  SS 1 1 . . . .  1 . . . .  1 , f l  1 1 , , f l & '  f l  1 1 ,:  , ( 1 - o f )  ~ 1 . ,  I a(--+-----]c,-N~ + - - [ S S ( - - + - - - - - ] < ,  +<,----],,v; +C<,---]M<. + (--+--x--x]~,,i~ + - - [ - - + - - - - - ] , ,  ~ +-m-J--C<, ---)'1'; 
I ta ass #) 2 L t a ass SS) aj t ce) ta ap p) 2 t a ass SS) ~ SS-c, t a) 
| (fl 1 1 )  . . . .  ot&;Pfffl 1 1 )  . . . .  1 ] , . ,  ( , 2  t ' ~ .  , (fl 1 1 ) , . .  3&g(SS 1 1 ) . , ,  ( l - a ) ( .  2 1 ) : ,  
/ a i m  + - -  - -  ~ / C  2 / V _  - -  - - / ~ / - -  + ~ - -  - - / C  2 + C ,  - -  ~ I C 2 V  ~ + / C  2 - -  ~ / P ¢ I  I - - / - -  + ~ - - - - / C ~ / l a .  + ~ / i  + ~ - -  - - I t  2"  W a - -  " ' = ~ ' g ~ , / C o  - -  - - / ~ a  

= ! t ' ~  at3 ssJ ~ 2 L t a  al3 ssj " aJ t aS " ta  an a J 2 t.a aS3 SSJ ' SS:¢.,t  < , ) '  

~ 1 - -  + - -  - - - ~  N c + - - / p / - -  + - - -  --/c~ + c2 - -2. Ic2V ] + I c  2 _ ~ 1  M c + I ~  + ~ - ~ i c 2 ~  c + - - I ~  + ~ -  ~ l c ~  ¢v' + --~4-7i, l c  ' - - - I 0 ,  
k~ ass SSJ " 2 L C a a~ SSJ aJ ~ t a )  ' Ca ,~  SSJ " 2 Ca ~SS SSJ <~ SS:,~ t ~ a )  <~ 

... a; .. ~ ; ~ i ; , .  

. . .  ~l~; . . . . . .  ~; .. ~ ; ~ i ; ~ .  +qi,) 
(13) 

The values of quantities q;~2, q~ ,  q~2, and q~3 can be interpo- 
lated from qy,  q~ and q~; for linear interpolation, this is ef- 
fected using 

Generalized Displacement Formulat ion.  The equations 
along the characteristic lines can also be expressed in terms of 
generalized displacements and their derivatives: u '* ,  a*, u*, 
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Fig. 3 Characteristics mesh in the s* - t* plane 

P 
ds*/dl*~c, .Z~,, ds~/dt*=-c, 

d s */dl* ~2~./"/ ~ .",,..~ s~dl* =-c2 ,\ 
A C 

A a V C s  

B 

P 

Q X''''X'\, O 

/Ca 

B 

A . 

& \ 

•B 
~ , \  C' 

Fig. 6 Grid points used in higher-order interpolation scheme 

P 

Along the characteristics ds* /d t*  = + c* : 

Fic~2du ' * -T- - F l c ~  da* _+ 
F3fl2 c ~ dt * 

s2 

+ (FiF6c~2 + ~ ) f l c * d t * w ' *  + (1 - a ) F 8  d05'* 

(a) (b) (c) 

Fig. 4 Typical elements for solution of finite difference equations 

w'* ,  ~* ,  w*, 05'*, ~* ,  and 05*. This entails el imination of the 
second-order terms u"*, ii*, w"*,  ¢¢*, 05"*, and ~ *  from Eq. 
(10) ,  with the assumption that displacement  derivatives of  u*, 
w*, and 05* are continuous in the s* - t* plane. In this ap- 
proach, the characteristic equations are more complicated than 
those in the generalized force-velocity formulation. 

Along the characteristics ds* /d t*  = + c * : 

F, cl*2du '* 7- - F , c ~ d f i *  +_ F2f l2c~dt* u* 
Od 

+ ( F 1 F 6 c ~ 2 + - ~ ) f l c * d t * w ' *  + 
(1 - ~)F7 

Fig. 5 

d05' * 

÷_ F 4 c * d ~ *  ÷- F2flc*dt*05* = 0. (16a )  

_+ Fsc~ddp* _+ F3flc~dt*05* = O. (16b)  

Along the characteristics ds* /d t*  = -c3+ *'. 

F6/3c~dt* 1 d w ' *  -7- c-f-dvO* ~ f l 2c~d t*  
Ol 2 ut* + oz2----'k rx rx 2 W* 

c ~ dt* 
~ - : - -  05'* = ¥ c ~ d t * q *  ( 1 6 c )  

a k  

where 

1 - oe + f12 1 - c 1 . 2 -  ~2c~2  
F1 , F2 : a 3 a2k 

1 - c ?  2 - ~2c~2 
F3 = a 2k ' 

1 - 2oe + a 2 + 3fl 2 - 2 a p  2 - a /52c f  2 + o d ~ 4 c ~  g2 

F4 = a 3p ' 

Load idealization for a half ring 

1 - 2a  + a 2 + 3fl 2 - 2oefl 2 - oe/52c~ 2 + oe/54c] 2 

F5 - oe 3/5 ' 

1 a c t  2 -  1 a c ~  2 -  1 
F 6  = 1 + ~ ,  F7 - ce 3 and F8 - -  a 3 ' 

and c~*, c2", and c ]  are defined previously in Eq. (11) .  
The solution procedure is similar to that for the generalized 

force-velocity formulation. However,  there are now nine quanti- 
ties to be evaluated from only six characteristic equations. Three 

Table 1 Comparison of errors in the generalized force- 
velocity and generalized displacement formulations 

Time* 0.5 l 1.4 
Absolute percent error in momentum value 

(generalized force-velocity formulation) 0.38 2.3 4.4 
Absolute percent en'or in momentum value 

(generalized displacement formulation) 3.0 4.3 20.0 

Note: time* refers to the ratio: time elapsed after q* acts/time for stress 
wave (speed c0 to travel through half the ring. 
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other independent equations are obtained from continuity con- 
siderations: 

du* = gt*dt* + u ' * d s *  

dw*  = v~*dt* + w ' * d s *  (17) 

dqb* = d?*dt* + qb'*ds* 

The finite difference form of the characteristic and continuity 
equations as applied to a typical element shown in Fig. 4 (a )  
are 

intersections of the characteristic lines ds*/dt* = _+ c*; these 
are referred to as "standard grid points" of the "standard 
mesh" depicted. Figures 3 and 4 (a )  show that there are other 
characteristic lines (dashed) that do not intersect standard grid 
points. Figure 4 (a)  shows a typical element with characteristic 
lines ds*/dt* = +c*  and ds*/dt* = +c*  intersecting the 
standard mesh at points A:, A3, C2, and Ca. Values of the 
generalized forces, velocities, and displacements at these points 
can be interpolated from those at standard grid points. The 
simplest method to do so is described by Eq. (14 ) - - l i nea r  
interpolation based on two neighboring standard grid points 

F,c,- - V,c? Fofl-c,~ 
2o~ 

*~ 2 * * 
Ftc t - Fff'~ ~ f l  c,& 

20¢ 

F,o 2" - F,C;' l~fl'G&2 
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Fic 2" Fff'; F, fl" G&: 
2a 

6flCsat3 0 0 
20~ ~ 

F6flc;&; 0 0 

c ~ "  at" 
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2 2 
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( ,, ~ ) , c ' ~ & *  (1 -  ~ ) F  7 F~flrc'~&* lqF6c', + 0 0 F4c ~ - 
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F~F~c~- + tic (1 - oOF s Esc~ F~flc~&~* 
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2 fl " 2 
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Wp  
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" : - : 2 0 ¢  " - 

F~,0~'ga; l ,, c; . .  + / Je t ; a t ;  ,, ~.:ar; ,. <arg , ,  , ,  
. . . . . . . .  + - ~ - < ,  - " ~ " ' [ q t ,  +qa.,) 2¢¢~ u~ + 0oak "a, ~ wa., 20~ wa., 

F,~flc;at; u'" l ,. c; . .  ~ - , ; a t ;  dat~ ,. d a t ~ ,  • . 
9 " C, ~ + ~ - -  H - ; ,  .0~" +O¢-~k we' O~ we' 20¢ -~ - - ~ ' q J c ' + - ~  "~-tq'+qc') 

c;at--L"22 + -~- '~;  + " ;  

c~6t* w'* -~- 
2 '~ + G + " ;  

,,~a,' ~L4; 
2 < ' +  +O,; (18) 

For elements adjacent to the t*-axis and the line RS (Fig. 3), 
the boundary conditions for a circular ring under radial loading 
are a~ = u~ = w~,* = ~ = ~bjg = 0. The finite difference 
equations for solution of the unknowns for these two types of 
elements are subsets of Eq. (18). Generalized forces cannot be 
obtained directly from solutions of the equations in the general- 
ized displacement formulation. They are obtained from the gen- 
eralized displacements and their derivatives using Eqn. ( 9 ( d -  
f ) ) :  

Higher-Order  Interpolation. Numerical solution of the 
governing finite difference equations necessitates use of the 
characteristic mesh shown in Fig. 3. Grid points are defined by 

(e.g., for A2, the neighboring standard grid points are A and 
B). This approach has been used by Plass (1958) in his study 
of wave propagation in straight beams. It is also initially used 
in the present investigation, but a higher-order interpolation 
scheme is formulated and results of both compared with experi- 
ments to ascertain superiority of the latter. With reference to 
Fig. 6, the proposed higher-order scheme interpolates values of 
the unknowns at Az and As based on values at A' ,  A, B, and 
B' ,  which are fitted by a cubic polynomial. For C2 and C3, the 
value at C '  is still unknown; hence, interpolation is based on 
three points, C, B, and B", which are fitted by a quadratic 
polynomial. Polynomials of higher order (e.g., quartic) are not 
used because of greater computational cost. 
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Comparison Between Force-Velocity and Displace- 
ment Formulations 

Although the generalized force-velocity and generalized dis- 
placement formulations are mathematically equivalent, there are 
differences in numerical evaluation of their solutions. These 
arise from discretization and truncation errors. Discretization 
error results from expression of the differential equations in 
finite difference form and from assumptions about how quanti- 
ties vary between grid points. Consider the following: 

du* = u*d t*  + u ' * d s * .  

In finite difference form (Fig. 4 ( a ) ) ,  

6t* 6s* 
u ~ - u ;¢ = -5- -  ( a ~ + a l e )  + ---ff  ( u '~ * + U 'A * ) . 

The above corresponds to an assumption that variation of d* and 
u '  * between grid points is linear and thus average values of a* 
and u '  * between points A and P are used. The two formulations 
involve different quantities which may vary differently between 
grid points. The more frequently terms which require an average 
value between two grid points are used, the less accurate the 
results. A comparison between the generalized force-velocity and 
generalized displacement formulations shows that the former has 
fewer such terms. Hence, the generalized force-velocity formula- 
tion is less susceptible to discretization error. An impulse-momen- 
tum check substantiates th is- - the  impulse-momentum balance ex- 
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Fig. 9 Comparison of higher-order and linear interpolation methods 
with experimental data--bending moment history for the brass ring 

hibits better agreement for results obtained with a generalized 
force-velocity formulation. This deviation between impulse and 
momentum increases as computation proceeds from one grid to 
the next. Table 1 shows the percentage deviation for a typical 
simulation, whereby a ring of curvature fl = 0.05 is subjected to an 
impact (triangular force-time pulse of four units of nondimensional 
time, acting over one grid length, 6s* = 1 ). The percentage error 
is larger and ultimately grows more rapidly with the generalized 
displacement formulation. Truncation error is related to the number 
of computations required in the solution process. The generalized 
force-velocity formulation involves six quantities and manipulation 
of six simultaneous equations, whereas the generalized displace- 
ment formulation involves nine quantities and nine equations. 
Hence, the latter is also prone to higher truncation error. 
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Fig. 11 Experimental and theoretical bending moment history for the 
brass ring 

w* values which are very close to those from the generalized 
displacement formulation. Therefore, the generalized force-ve- 
locity approach is preferred. 

Impact Experiments 
Experiments were conducted to measure the time history of 

generalized forces (bending moment and axial force) at selected 
points on a ring subjected to impact for comparison with theoret- 
ical results. A brass and an aluminum ring of identical dimen- 
sions, external diameter of 400 mm, internal diameter of 380 
ram, and a width of 10 ram, were subjected to radial impact by 
a falling 0.412 kg cylindrical steel striker. Figure 8 shows the 
test arrangement. Circumferential strains at selected angular lo- 
cations around the ring were determined by pairs of strain 
gauges, one on the outer and the other on the inner surface 
of the ring, measuring eo and c~, respectively. This facilitated 
computation of the axial force and bending moment from 

N = El__h (co + e~) (19) 
2 

E l h  2 
M = (co - e l )  (20) 

12 

where 

LL 

< 

.2 

0.6 
0.4 
02 

0 
-0.2 
-0.4 
-0.6 
-0,8 

0.2 
6 

-0.2 
-0.4 
-0.6 
-0.8 
-1,0 
-1.2 

The preceding discussion points to the conclusion that a general- 0.6 
ized force-velocity formulation produces better accuracy in terms 
of an impulse-momentum balance. However, this approach does z ~ 0.4 
not yield generalized displacements directly from solution of the 0.2 
characteristic equations. Numerical integration of forces and veloc- ~ 0 
ities is required in determining displacements. This does not ensure u_ 

"~ -0.2 continuity of displacement gradients (which is satisfied in the 
generalized displacement formulation) and may give rise to error -0.4 
in displacement values. Figure 7 illustrates this by comparing re- -0.6 
suits from the two formulations. From symmetry, the slope d w * /  
dO* at 0 = 0 deg should be zero. The generalized displacement 
formulation uses this as a boundary conditions and therefore w* 0.a- 
satisfies this. However, the generalized force-velocity formulation 0.6. 
produces a steep nonzero slope at 0 = 0 deg which is unrealistic. ~ 0.4- 
Nevertheless, Fig. 7 shows that agreement between the two formu- ~ 0.2- 

8 0 
lations is good at angular positions away from the vicinity of ~_ -0.2- 
impact (0 = 0 deg). ~ -0.4- 

In terms of computing time and accuracy of results (i.e., for '~ -0.6 
N*, V*, M*, d*, ~*,  and ~ * ) ,  the generalized force-velocity -0.8- 
formulation is preferred because it involves a smaller number -1.0 
of equations. Also, its results show a better impulse-momentum 
balance. Its main inaccuracy lies in prediction of radial displace- 
ments near the point of impact. However, elsewhere it yields Fig. 12 
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Fig. 13 Experimental and theoretical bending moment history for the 
aluminum ring 

lengths of s* = 0.5 and s* = 1 were selected for study. Numeri- 
cal results for the bending moment and axial force histories 
using these two values were compared the difference found to 
be insignificant. The assumption of a segment length over which 
the impact force acts required a finite difference grid size that 
was either equal to or smaller than this length. A segment length 
of s* = 1 was used because this value required less storage 
space and computing time. 

C o m p a r i s o n  Between  Theoret ica l  and E x p e r i m e n t a l  
Results  

Experimental results of  the bending moment and axial force 
histories at various angular positions along the ring specimens 
were compared. First, a comparison was made between test data, 
and results generated by linear and higher-order interpolation 
schemes to determine which scheme is superior. Figures 9 and 
10 show comparisons between results generated by the two 
schemes and experimental bending moment and axial force his- 
tories at 0 = 140 deg and 0 = 180 deg for the brass specimen. 
The difference between the experimental bending moment data 
and theoretical results based on linear interpolation is large 
(Fig. 9).  Agreement is significantly better with higher-order 
interpolation. Deviation between the two interpolation methods 
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1 is the ring width = 25.4 mm _ 200 
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The force exerted by the striker during impact was measured ~ 0 
by an attached accelerometer. Tests were repeated several times u_° -100 
for each specimen to ensure consistency and repeatability of ~ • ~ -200 
results. < -300' 

To facilitate comparison, the experimental impact force his- 
tory was used as a basis to define the load input for calculations -400 
based on the theoretical analysis. The numerical solution proce- 
dure requires the load to be in the form of a force intensity- 400. 
time input (i.e., force per unit length of  ring circumference),  300. 

200. but experimental data represent impact as a force-time history. ~" 100. 
This can be expressed as a force intensity-time pulse by assum- "~ 

?_ 0 ing that the force acts over a small circumferential segment of ,9 -100 
the ring on which the striker makes contact. The distribution of ~ -200. 
the impact force on the segment 6s* is assumed to be linear as < -3oo. 
shown in Fig. 5. However, the contact length is unknown and -400. 
difficult to determine in practice. To estimate a suitable segment -500 
length over which the force may be assumed to act, a prelimi- 
nary investigation of the sensitivity of numerical results to seg- 
ment length was performed. Two different segment lengths, Fig. 14 
2.89 mm and 5.77 mm, corresponding to nondimensional ring 
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Table 2(a) Wave speeds in the brass ring 

Arrival times (#s) 

Speed (m/s) = 
distance measured 
along centroid of 

cross section~arrival 
time 

Angular Bending Axia l  Bending Axial 
positions moment force moment force 

0 = 60 deg 89 81 2290 2521 
0 = 120 deg 183 111 2230 3680 
0 = 180 deg 277 164 2210 3740 

Table 2(b) Wave speeds in the aluminum ring 

Arrival times (/us) 

Speed (m/s) = 
distance measured 
along centroid of 

cross section~arrival 
time 

Angular Bending Axia l  Bending Axial 
positions moment force moment force 

0 = 60 deg 75 51 2720 4000 
0 = 120 deg 148 80 2760 5110 
0 = 180 deg 218 122 2810 5021 

is negligible for axial force predictions (Fig. 10). Based on this 
comparison, the higher-order interpolation scheme was utilized 
in the rest of this study. 

Figures 11-14 show, respectively, comparisons between ex- 
perimental and theoretical bending moment and axial force his- 
tories at locations 20 deg, 60 deg, 120 deg, and 180 deg from 
the point of impact for the brass and aluminum rings. Overall 
agreement is good and correlation is excellent immediately fol- 
lowing commencement of impact. Deviation between theory 
and experiment tends to increase with time. This may be the 
result of frictional losses or damping, which are not accounted 
for in the equations of motion. A second possible cause of the 
experimental deviation are the lateral constraints imposed by 
the steel frame via foam pads (Fig. 8); these additional forces 
are also not accounted for in the analysis. However, these two 
factors appear minimal in their influence. 

The experimental results confirm several typical characteris- 
tics of wave propagation predicted by the governing equations. 
First, finite wave speeds; Figs. 11 to 14 show distinct arrival 
times at which the bending moment and axial force are detected 
at different angular positions along the rings. Secondly, the 
dependence of wave speeds on material properties. Flexural, 
longitudinal, and radial shearing wave speeds increase with the 
bar velocity c (= x /~p)  of a material. The bar velocities of 
aluminum and brass are 5040 m/s and 3670 m/s, respectively. 
A comparison of the arrival times of the bending moment and 
axial force in the ring specimens for common angular positions 
(Figs. 11 and 13, Figs. 12 and 14), shows an earlier occurrence 
for the aluminum ring. Thirdly, the governing theory predicts 
that axial stress waves travel faster than flexural waves. Com- 
parison between the arrival times of the bending moment and 
axial force for identical positions in the brass and aluminum 
rings (Figs. 11 and 12) confirms this. Tables 2 ( a - b )  show the 
bending moment and axial force wave speeds derived from 
experimental data. These values indicate that the axial force 
propagates at a higher speed. They also show that the flexural 
wave speed measured at the various positions exhibit a smaller 
variation than the speed of axial force propagation. This is 
because it is experimentally easier to detect the arrival time of 
a flexural wave. Bending generates a larger and more easily 
detected circumferential strain e00 at the ring surface than an 
axial force does. 

Comparisons between the experimental and theoretical re- 
sults confirm that the numerical scheme proposed in this study 
is capable of predicting the transient response of a ring with 
good accuracy. Figures 11 to 14 show that correlation between 
theory and experiment is good for at least 460 ,as after initiation 
of impact. An estimate of the time for the fastest wave (radial 
shear) to travel from the top to the bottom of an aluminum ring 
is 120 ,as. Hence, 460 ,as after impact, this mode of disturbance 
would have traveled completely around the ring more than once. 
Yet, correlation between theory and experiment remains good, 
implying that the proposed solution scheme is capable of pre- 
dicting the response even after the stress waves reach the bottom 
of the ring. Strictly speaking, numerical computation of the 
response before and after the waves reach the bottom should 
differ. Application of the governing equations to radial impact 
on circular rings requires assumpt.ion of physically valid bound- 
ary conditions, i.e., V* = d* = 45* = 0, at both ends of a half 
ring. Computation of the response before the stress waves reach 
the bottom of the ring is based on boundary conditions imposed 
at the location of impact (i.e., the top end of a half ring), while 
computation of the response after the stresses reach the bottom 
is based on boundary conditions imposed at both the impact 
point and the bottom of the ring (i.e., at both ends of a half 
ring). Truncation error in the numerical solution process is 
cumulative. Hence, results generated after the stress waves 
reach the bottom of a ring would contain an accumulation of 
truncation error. However, this error is still relatively small 
compared to the actual magnitudes of bending moment and 
axial force and therefore correlation between the experimental 
and numerical results remains good. 

Conclusions  

Morley's (1961) adaptation of Timoshenko beam theory for 
elastic wave propagation in curved rods was applied to stress 
wave propagation in circular rings subjected to short-duration 
radial impact. The governing partial differential equations were 
solved numerically using the method of characteristics. An im- 
provement of the solution procedure used by Chou and Morti- 
mer (1967) and Phillips and Crowley (1972) was proposed, 
whereby a higher-order interpolation scheme was employed. 
Results in terms of generalized forces were verified by impact 
experiments on metal rings. They showed that the higher order 
scheme yielded better correlation with experimental data and 
substantiated the validity of the theoretical formulation and so- 
lution process. 

The governing equations could be solved via either a general- 
ized force velocity or a generalized displacement formulation, 
the difference being the quantities selected as the variables. It 
was found that that the former yielded better results with respect 
to an impulse-momentum balance. A comparison of both formu- 
lations also showed that the generalized force-velocity formula- 
tion is mathematically simpler and therefore incurs smaller trun- 
cation errors during computation. Its finite difference equations 
also have smaller inherent discretization errors, because of 
fewer terms involving average values between grid points. How- 
ever, computations based on the generalized force-velocity for- 
mulation do not yield displacements directly and require subse- 
quent integration of velocities. This generated steep variations 
in the distribution of radial displacement near the impact point. 
Nevertheless, in view of the smaller truncation and discretiza- 
tion errors involved, it is the preferred approach. 
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Contact Problems of Two 
Dissimilar Anisotropic 
Elastic Bodies 
In this paper, a two-dimensional contact problem of  two dissimilar anisotropic elastic 
bodies is studied. The shapes of  the boundaries of  these two elastic bodies have been 
assumed to be approximately straight, but the contact region is not necessary to be 
small and the contact surface can be nonsmooth. Base upon these assumptions, three 
different boundary conditions are considered and solved. They are: the contact in 
the presence of  friction, the contact in the absence of  friction, and the contact in 
complete adhesion. By applying the Stroh's fi~rmalism for  anisotropic elasticity and 
the method of analytical continuation for complex function manipulation, general 
solutions satisfying these different boundary conditions are obtained in analytical 
forms. When one of  the elastic bodies is rigid and the boundary shape of  the other 
elastic body is considered to be fiat, the reduced solutions can be proved to be 
identical to those presented in the literature for the problems of rigid punches in- 
denting into (or sliding along) the anisotropic elastic hal f  plane. For the purpose of  
illustration, examples are also given when the shapes of  the boundaries of  the elastic 
bodies are approximated by the parabolic cun,es. 

1 Introduction 
Due to mathematical infeasibility, three-dimensional contact 

problems were usually formulated and solved under several 
restrictive assumptions. For example, the contact region is very 
small and the equations of the undeformed surfaces near the 
contact region could be approximated sufficiently accurately by 
functions of the form z = ax 2 + 2bxy + cy 2. For isotropic 
bodies, the problem was first solved by Hertz (1882) consider- 
ing only frictionless surfaces and perfectly elastic solids. Fol- 
lowing his work, the progress in contact mechanics has been 
associated largely with the removal of these restrictions. Exten- 
sive references can be found in the books by Shtaerman (1949), 
Galin (1953), Gladwell (1980), and Johnson (1985). For the 
contact of anisotropic bodies, an important result has been dem- 
onstrated by Willis (1966). Practical examples of the analysis 
of a transversely isotropic half-space may be found in Conway 
(1956), Fabrikant ( 1971 ), Dahan and Zarka (1977), etc. 

As to the two-dimensional contact problems, the contact re- 
gion has not been assumed to be small and no assumption 
regarding the shapes of the boundaries has been made, except 
the condition that they should be approximate to straight lines. 
For isotropic elastic bodies, the solutions can be found in Musk- 
helishvili (1954) for smooth surfaces, and in Glagolev (1945) 
for nonsmooth surfaces. Two-dimensional anisotropic contact 
problems were discussed by Galin (1953) and the indentation 
of an anisotropic half-plane by a rigid punch is solved in Green 
and Zerna (1954). Recently, by employing the Stroh's formal- 
ism (Stroh, 1958; Ting, 1996), we solved a series of punch 
problems (Fan and Hwu, 1996; Hwu and Fan, 1998a). In that 
series, only one elastic medium (i.e., the half-plane) is consid- 
ered and the punch indenting into (or sliding along) the half- 
plane is assumed to be rigid. By carefully reviewing these solu- 
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tions, we find that the punch problem is just a counterpart of 
the interface crack problem, with one of the materials being 
rigid (Hwu and Fan, 1998b). This observation stimulates us to 
study the contact problems of two anisotropic elastic bodies, 
since its possible counterpart (the problem of the interface 
cracks between two dissimilar anisotropie elastic media) has 
been solved long ago (Gotoh, 1970; Willis, 1971). 

2 Problem Formulat ion  
Consider two dissimilar anisotropic elastic bodies St and $2 

which are in contact along a segment L of their boundaries (Fig. 
1 ). If these two elastic bodies satisfy the basic laws for two- 
dimensional linear anisotropic elasticity, by using the Stroh's 
formalism (Stroh, 1958; Ting, 1996; also see Appendix A for 
a brief introduction) the displacement vector u = (Ul, u2, u3) 
and the stress function vector ~ = (qSt, q52, ¢h3) of these two 
bodies may be expressed in a fixed rectangular coordinate sys- 
tem x~, i = 1, 2, 3 as (the symbols xt and x2 will be replaced 
by x and y for the convenience of presentation) 

Alfl (z) nl + 
A t f , ( z ) ,~  , z C S t  (2.1a) 

~ j  = Blfl(z) + Btft(z) ,J 

and 

U2 : Azf2(z) + A2f2 (z ) ' l  

,J ~ 2  B 2 f 2 ( z )  + B2f2 (Z)  
z E & (2.1b) 

where the subscripts 1 and 2 are used to denote the quantities 
pertaining to the bodies Si and &, respectively. The overbar 
represents the conjugate of a complex number. The stresses cr u 
are related to the stress function vector ~ by 

O'il = - - ~ i , 2 ,  O-i2 = q~i.l' (2.1C) 

f (z )  = [f t (zl)f2(z2)  f~(z3)] r is a function vector composed 
of three holomorphic complex function f~(z~), ce = 1, 2, 3, 
which will be determined by satisfying the boundary conditions 
of the problems. The argument z~ of each component function 
f~(z,) is written as z, = x + PaY in which p ,  is the material 
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y = g(~r(x ) ' , ,  
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b ,  ' """"" y = g"~'(x) 

Fig. 1 Contact of two dissimilar anisotropic elastic bodies. (Solid line: before defor- 
mation; dot line: after deformation.) 

eigenvalue whose imaginary part has been arranged to be posi- 
tive. A = Jan, a2, a3] and B = [b~, b2, b3] are 3 × 3 complex 
matrices of  which (a~, b,) ,  a = 1, 2, 3, are the material eigen- 
vectors associated with p~. 

Equation (2.1) does not consider the physical conditions of 
the contact problems. It is just a solution set for any two aniso- 
tropic elastic bodies. In this solution set, the material properties 
of these two elastic bodies may be reflected by the eigenvalues 
p ,  and eigenvector matrices A and B. In order to have a com- 
plete knowledge about the contact behavior from (2.1),  the 
unknown function vectors L (z) and f2 (z) should be determi ned 
through the satisfaction of the boundary conditions. For a con- 
tact problem, many different boundary conditions may be con- 
sidered to suit for a real situation. In this paper, three commonly 
encountered boundary conditions will be formulated and solved. 
They are: contact in the presence of friction, contact in the 
absence of  friction, and contact in complete adhesion. Before 
we write down the mathematical expressions for these three 
different boundary conditions, a few common physical assump- 
tions will be discussed and formulated as follows. 

I fy  = g ( ~ ( x )  and y = g(~)(x) are, respectively, the equations 
of the boundaries of the bodies S~ and $2 before deformation, 
and y = g*(x )  is the equation of the line of contact after defor- 
mation (Fig. 1 ), the contact in the x~-direction can be expressed 
a s  ' 

g(~)(x) + u~l)(x) = g * ( x  + u~l)), 

g(2)(x) + u ~ ) ( x )  = g * ( x  + u~)) ,  x ~ L, (2.2a) 

where the superscripts ( 1 ) and (2) are used to denote the quanti- 
ties pertaining to the bodies S~ and S~, respectively. In the cases 
of  small deformation, g * ( x  + u] ~) can be represented by its 
Taylor series g * ( x )  + u ~ t ) g * ' ( x )  + . . . .  Similarly, g * ( x  + 
u] ~)  = g * ( x )  + u~2~g*'(x)  + . . . .  Subtracting (2.2a)~ from 
(2.2a)~, we have 

g(l~(x) + u ~ ) ( x )  - g(2~(x ) - u~Z)(x) 

= (u~ ~) - u~Z~)g*'(x)  + . . . .  (2.2b) 

If the line of contact after deformation is approximate to a 

straight line, i.e., g * ' ( x )  ~ O, (2.2) may then be replaced by 
a simple expression as 

u~2l(x) - u~t~(x) = g ( x ) ,  x E L,  (2.3a) 

where 

g ( x )  = g(I ) (x)  - g(2)(x).  (2.3b) 

In addition to the consideration of deformation in xz-direction, 
the traction continuity across the contact region and the traction- 
free condition along the uncontact region should also be consid- 
ered. If the shapes of the boundaries are approximate to straight 
lines, the stresses normal and tangent to the boundaries may be 
approximated by 0-22, 0-12, and 0-32. The mathematical expres- 
sions for the traction conditions may then be written as 

0 -~  0 -~ ,  ~ ,  ~2~ ~ ,~  0-~2~ t ~ 2 2  ~ 0 " 2 2  , ~ J 3 2  ~ 3 2  , X E L, 

0-~1) 0-~2) ~(1) (2) ~(t~ ~(Z~ 0, X ~ L. (2.4) 
~ c J 2 2  ~ 0 - 2 2  ~ ~ 3 2  ~ u 3 2  

Equations (2.3) and (2.4) are written based upon the assump- 
tions of small deformation and small boundary slopes, and are 
common conditions for the three different boundary conditions 
described below. On the basis of these two conditions, we may 
now write down the boundary conditions for three different 
cases as follows. 

Contact in the Presence of  Friction: 

t , x E L, (2.5a) 
a ~ ( x )  = 0 - ~ ( x )  = a ~ ( x )  

u~2~(x) - u~l~(x) = g ( x )  

0 - ~ ( x )  = ~ ( x )  = ~ ( x )  = ~ ( x )  

~ ( x )  ~ = = cr32(x) = 0, x ~ L, (2.5b) 

where ~7~ and ~73 are, respectively, the load ratios of the normal 
force to the horizontal forces in x~ and x3 directions. The limit 
values of these two load ratios will be the coefficients of static 
friction in the x~ and x3 directions. 
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Contact in the Absence of Friction: 

o ~ ( x )  = f f ~ ( x )  = 0 ] 

o - ~ ( x )  = o - ~ ( x )  = o 

~l) _ ~ , x ~ L, (2.6a) 
a ~  (x)  - a ~  (x)  

u~2)(x) - u~*)(x) = g(x) 

, , ~ ( x )  = , ~ ( x )  = ~ ( x )  = ~ ( x )  

= ot~)(x) = o~3~(x) = O, x ~ L. (2.6b) 

Contact in Complete Adhesion: 

b l ~ l ) ( x )  ~--- U ~ 2 ) ( X ) '  O']12)(X) = 0"~22)(X) 1 

U ~ I ) ( x )  /A ~2) ( X )  , (1) __ (2) = ~3~ ( x )  - c ~  ( x )  
, x ~ L ,  (2.7a) 

u~2~(x) - u~)(x) = g(x),  

~r~(x )  = , , ~ ( x )  

o - ~ ( x )  = o - ~ ( x )  = o - ~ ( x )  = o - ~ ( x )  

= cr~3~>(x) = a ~ ( x )  = O, x ~ L. (2.7b) 

3 The  M e t h o d  o f  Analy t i ca l  Cont inuat ion  

The common conditions for the three different boundary con- 
ditions given in (2 .5 ) -  (2.7) are the traction continuity across 
the contact region and the traction free along the uncontact 
region, which are expressed by (2.4). By using the relations 
(2.1 c), these common conditions may be rewritten in terms of 

~ and ~b ~ as 

4,1 = 4~;,  V x ,  

~b~ = ~b~ = 0, x ~ L .  (3.1) 

By applying the general solutions given in (2.1), the traction 
continuity condition (3.1)~ leads to 

Blft(x +) - g2f2(x-) = B~f~(x-) - B~f~(x÷), (3.2) 

where x ÷ = x + i0 + and x-  = x + i0- .  One of the important 
properties of holomorphic functions used in the method of ana- 
lytical continuation is that if f (z) is holomorphic in S~ (or S~), 
then f(~-) is holomorphic in $2 (or S~). From this property and 
Eq. (3.2), we may introduce a function which is holomorphic 
in the entire domain including the axis y = 0, i.e., 

~Blf l (z)  - B2~(~), z E S1, 

O*(z) = [B2~(z)  B : f ~ ,  z ~ S~. 
(3.3) 

Since O*(z) is now holomorphic and single-valued in the whole 
plane including the point at infinity, by Liouville's Theorem we 
have O*(z) -= constant. However, constant function vector f 
corresponds to rigid-body motion which may be neglected. 
Therefore, 

O*(Z) -= O. (3.4) 

Combining (3.3) and (3.4), we have 

f2(z) = B~ lBl f l ( z ) ,  z E S1, 

fl(z) = i~i-~B2f2(z), z E $2. (3.5) 

By employing (3.5) into the traction-free condition (3.1)2, 
we get B~ f ~(x +) + B2f~(x-)  = 0. Based upon this relation, 
we now introduce a new function vector 

• - B l f j ( z ) ,  z ~ S1, 

O(z) = [ B2f2(z), z E $2. 
(3.6) 

Applying (3.5) and (3.6) to (2.1) for the points above and 
below the x-axis, we may derive the following expressions: 

4 , ; ( x  +) = 4 , ; ( x - )  = O ' ( x - )  - O'(x+),  

ul(x +) = iMi-lO(x +) + il~li-lO(x-), 

u2(x-) = --iM~lO(x -)  - il~l~tS(x+), (3.7) 

where Mk, k = 1, 2, are the impedance tensors defined as 

M k = - i B k A ;  1, k =  1,2. (3.8a) 

It has been shown that (Ting, 1988) M~ -~, k = 1, 2, are Her- 
mitian matrices (M~ ~ = 1VI; r) and 

M ;  ~ = L~X(I + iSk r) = (I - iSk)L~ 1, (3.8b) 

where S and L are two real matrices defined as 

S = i(2AB T - I ) ,  L = - 2 i B B  T. (3.9) 

Moreover, L is positive definite if the strain energy is positive. 
Explicit expressions of S and L for general anisotropic materials 
and, in particular, for monoclinic materials have been presented 
by Ting (1992) and Wei and Ting (1994). For orthotropic 
materials, the explicit expressions of S and L have been found 
in (Dongye and Ting, 1989; Hwu, 1993a) and are shown in 
Appendix B. 

Subtracting (3.7)2 from (3.7)3, we have 

U 2 ( X -  ) - -  U l ( X  + )  : - i { M * O ( x  +) + l~TI*O(x-) }, (3.10) 

where M* is a 3 × 3 bimaterial matrix defined as 

M* = Mi -1 + M~ 1. (3.11) 

Note that M* is not a newly defined matrix. Actually it plays 
an important role in the problems of interface cracks. By (3.8b), 
we can prove that M* is also a Hermitian matrix (M* = M *r) 
which may be expressed as 

M* = D - iW, (3.12a) 

where D is a real symmetric and positive definite matrix, and 
W is a real antisymmetric marix. They are related to the real 
matrices $1, $2, Ll, and L2 by 

D = L i  1 + L ~  1, W =S1L?  l -  S2L~ *. (3.12b) 

With the solutions provided in Appendix B, it can easily be 
shown that M* of the orthotropic bimaterials has the following 
simple structure: 

1 1 
LTI)+ r(2"---~ L, 11 

/ e ( l )  C ( 2 ) \  , (  O12 M* .~ o12  
z 77i5 7"i7~/ 

\ L ,  22 L, 22 / 

0 

i (  S ~  S ~  
~ r ( 1 )  r ( 2 ) /  
\ L ,  22 L,22 / 

1 1 
m + m  0 
L(i) t(2) 22 L'22 

1 1 
0 L~ + T~ 

(3.13) 

4 Contac t  in the Presence  o f  Fr ic t ion  

By using the function vector 0 defined in Section 3, the 
boundary conditions given in (2.5) may now be written as 

O ; ( x - )  - O;(x ÷) = ~ , [ O ; ( x - )  - O~(x+)],  

O~(x-)  - O;(x +) = ~73[O~(x-) - O~(x+)],  
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m*lO~(x +) + m*aO2(x ÷) + m*~O3(x +) 

+ rg*~O~(x ) + n~*202(x-) + rg*303(x ) = ig(x), (4.1) 

where 0~, i = 1, 2, 3, are the components of the function vector 
0, and m~, i, j = 1, 2, 3, are the components of the matrix 
M*. Rearrangement of the first and second equations of (4.1) 
gives 

lim [0 / (z)  - rl~0~(z)] = lim [0 / (z)  - rl~0~(z)], 
y-~O + y - , o  

i =  1,3.  (4.2) 

Thus the function O[(z) - r]~O~(z), i = 1, 3, is holomorphic 
in the whole plane including the points at infinity and it tends 
to zero as t zl --" oc since the stresses vanish at infinity, hence 
by Liouville 's theorem one can conclude that 

O[(z) - rigOr(z) = 0, i = 1, 3. (4.3) 

Employing this result into (4.1)3, the displacement boundary 
conditions may now be expressed in terms of 0z as 

O;(x+)+~O~(x  ) = ~ g ' ( x ) ,  x ~ L ,  (4.4a) 

where 

/3 = m*z + ~7,m*, + ~73m~*. (4.4b) 

Equation (4.4) is a standard Hilbert problem, the solution to it 
is (Muskhelishvili, 1954) 

X ( z ) { ~  g ' ( t )  d t + i N } ,  (4.5a) 
0 ; (z )  = ~ • /3X+(t)( t  - z) 

where 

X ( z )  = ( z  - a ) - ~ ( z  - b )  ~-~, 

1 a r g ( ~ ) ,  0 - - < 6 <  1. 
6 = 27r 

(4.5b) 

N is the resultant normal force applied by the body S~ (or S~) 
to the body S~ (or S~ ). arg stands for the argument of a complex 
number. Note that t5 is a real number and hence there are no 
oscillatory singularities in the solution, a and b are the ends of 
the contact region L, which should be determined by assuming 
the stresses vanish at x = a and x = b, i.e., a ~ ( a )  = c~2(b) 
= 0 .  

For a contact problem, it is always interesting to know the 
contact pressure and the surface deformation of these two elastic 
bodies. From (3.7),  (2.1 c),  and (4.3), we have 

~ r ~ ( x )  = 0 ; ( x - )  - 0 ; ( x + ) ,  

u~ ~ = i/3('~O;(x +) + ifl(~O;(x-),  

u~ a~ = - i f l (~O;(x +) - i /3~O~(x-),  (4.6a) 

where 

/3 ~) = ,,,2z~(e~ + rhm~] ) + ~/3H~23~ ~(~), k = 1, 2, (4.6b) 

and m~ ~, i, j = 1, 2, 3 are the components of the matrices 
M~ -~, k = 1, 2. Also, from (3.11),  (4.4b),  and (4.6b),  we have 
/3 (~ + if(2) =/3. By (4.4a),  we may express O~(x +) (or O~(x-)) 
in terms of 02(x-)  (or 02(x+)) for the contact region. As to 
the noncontact region, O~(x +) = 02(x-) ,  which is obtained 
from the traction-free conditions given in (3.1)2 and (3.7)~. By 
these relations, the contact pressure and the surface deformation 
may be completely determined by 02 (x - ) (or 02 (x + ) ). Through 
the assumption g* ' (x)  ~ O, the surface after deformation in 

the x2-direction may be expressed, by (2.2a),  as g ~ * ( x )  = 
g ~ ( x )  + U(zl~(x) for the body $1, and g~Z~*(x) = g~Z~(x) + 
u~2~(x) for the body $2. Along the contact line g°~*(x) = 
g/2)*(x) = g*(x),  where x E L. Following the above state- 
ments, we may now derive a simplified expression for the con- 
tact pressure and surface deformation. The result is 

1 
cr22(x) = ~ {(/3 + fl)O~(x-) - ig ' (x)} ,  

1 , x ~ L  
g*(x) = -fi {ff~Z~g~l~(x) + /3/~g~2~(x) 

+ i(fl~l~fl ~ - /3~'~/3~z~)0~(x-)} 

and 

g~l~*(x) = g~l~(x) + i(/3(1~ + ¢7c1~)02(x ) ' 1  
/ -  

g~2~*(x) g~Z~(x) - i(/3(2~ + fl~2~)O2(x-), J ' 

(4.7a) 

xq~L.  

(4.7b) 

The problem now is solved in principle. Since no analytical 
solution has been found for such a general case, the verification 
was done by specializing the present problem to a problem of 
which the analytical solution exists. The most recent one should 
be the problem considering a rigid punch sliding along the half- 
plane surface. By letting M~ = 0 (from the condition that S~ is 
rigid) and g(2~'(x) = 0 (from the condition that the half-plane 
surface is flat), it can easily be proved that our present solutions 
(4.5) and (4.7) agree with the solutions presented in Fan and 
Hwu (1996) and Hwu and Fan (1998a) for the case of a rigid 
punch sliding along the half-plane surface. 

From the solutions obtained in (4.5),  we observed that the 
anisotropic effects are reflected through the parameter/3. For 
the contact of two orthotropic elastic bodies, the explicit expres- 
sion of/3 may be obtained by substituting (3.13) into (4.4b).  
The result is 

l - -  _ _  ; ~  ( K ' ( I ) I r ( 2 )  K ' ( 2 ) f ( 1 ) ' ~  /3 t~l~r(z~ { L ~  + L~) + ' '11t°12~22 - o 1 2 ~ 2 2 ) } .  (4.8) 
L ,  2 2  L ' 2 2  

For two contacted isotropic elastic bodies, (4.8) may be further 
reduced by employing the relations given in (B5).  The result 
is 

1 
/3 = {#,(1 + K2) + #2(l  + K1) 

4#t#2 

+ irh[#2(1 - ~ c , ) - # , ( 1  - K2)]}. (4.9) 

Contact  of  T w o  Parabolic  Elastic Bodies,  Consider the 
case of contact between two anisotropic elastic bodies bounded 
by surfaces g ~ ( x )  = xZ/2Ri and g(Z)(x) = - (x2/2R2)  where 
R~ and R2 are the radii of the curvatures and should be large 
enough to approximate to straight lines. The resultant vector of 
the external force applied by the body S~ (or $2) to the body 
$2 (or Sl) is (N, F,  0),  from which r h = F/Nand r/3 = 0. By 
(2.3b),  we have 

g(x) = -~- + . (4.10) 

Substituting (4.10) into (4.5),  and evaluating the line integral 
with the aid of residue theory (Muskhelishvili, 1954), we obtain 

O~(z)  - 

i(Ri + R:) 

(/3 + ff)RIR2 

iN 
{z - X(z) j2(z )}  + : - - X ( z ) ,  

zTr 

(4.11a) 
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where 

j z ( z )  = z 2 - [6(a - b) + b]z - ½6(1 - 6)(a  - b) ~. 

(4.1 lb)  

The normal pressure a =  (x) along the contact region can then 
be calculated by substituting (4.11) into (4.7a)~. The result is 

- i X ( x - ) ( R 1  + R2) { (_~ +_ _~)RiR2N~ 
0"22(x) = /3R~R2 j z (x )  2rr(R1 + R2) J ' 

a < x <  b, (4.12a) 

where 

X ( x  ) = - ( x - a )  e ( b - x ) a - ~ e  ~ ,  a < x < b .  (4.12b) 

The contact region (a ,  b) can now be determined by assuming 
the stresses vanish at the ends x = a and x = b. Substituting 
(4.12) into o 2 2 ( a )  = o 2 2 ( b )  = 0 ,  w e  obtain 

a= = 6(/3 + fl)R1R2N 
~r(1 - 6)(Ri + R=) ' 

b2 = (1 - 6)(/3 + fl)R~R=N (4.13) 
rc6(R~ + R2) 

Corresponding to these values, (4.12) can be further simplified 
to 

0 " = ( x )  = - 
2(R1 + R2) sin ~ 

(/3 + fl)R~R2 
(x - a)~-~(b - x)  ~, 

a < x <  b. (4.14) 

The solution (4.14) shows dear ly  how the parameters R~, R2, 
a,  b,/3, 5 influence the contact pressure. With the aid of (4.4b), 
(4.5b)> (4.8),  (4.9),  and (4.13), it can be easily understood 
how these parameters relate to the geometry, loading, and mate- 
rial properties of the contact bodies. 

To find the solution for the surface deformation, one may 
use (3.7)2.3 in which O(x +-) = {01(x-+), 02(x+-), 03(x±)} r 
where 02 (z) are obtained from (4.11 ) by integration with re- 
spective to z, and 01(z) and 03(z) are related to 02(z) by (4.3).  
If  one is only concerned about the deformation in the xz-direc- 
tion, a simplified result has been provided in (4.7a, b). 

Numerical Example .  Consider two orthotropic elastic bod- 
ies whose material properties are 

E1 = 114.8Gpa, E2 = 4 8 . 0 G p a ,  

G12 = 24.0 Gpa, ul2 = 0.21, for &,  

El = 60.7 Gpa, E2 = 24.8 Gpa, 

G12 = 12.0 Gpa, u12 = 0.23, for $2, 

where E,  G, and u are, respectively, the Young's  modulus, 
shear modulus, and the Poisson's ratio. The subscripts 1 and 2 
denote the x and y directions. The radii of the curvatures for 
the boundaries of  the elastic bodies are R~ = 100 m and R2 = 
200 m. The coefficient of  static friction is #, = 0.5. We now 
consider the contact of these two elastic bodies suppressed by 
the normal force N = 1 kN and the horizontal force F = 0.4 
kN, which is less than the maximum friction force so that these 
two bodies are in the equilibrium condition. From these data 
we obtained rh = 0.4, /3 = (10.85 + 0.41i) × 10 -H m=/N, 
/3(L) = (3.68 - 0.47i) × 10 11 m2/N,/3(2) = (7.17 - 0.88i) 
× 10 -~  m2/N, 5 = 0.488, a = -2 .09  × 10 -3 m, b = 2.20 × 
10 .3 m. The contact pressure and surface deformation can then 
be calculated by using (4.14) and (4.7).  The results are shown 
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Fig. 2 Contact pressure and surface deformation for the contact be- 
tween two parabolic orthotropic elastic bodies 

in Fig. 2 which seems to be symmetric with respect to the 
contact center. It looks unreasonable since the friction is consid- 
ered in this case. However, the numerical data of a,  b, and 6 
calculated above show that they are really unsymmetric but 
nearly symmetric. A more clear unsymmetric deformation is 
shown in Fig. 1 in which zh = 0.8. Note that the surface defor- 
mation plotted in F igs .  1 and 2 has been magnified 105 times 
to see clearly how they deform. 

5 Contact  in the Absence of  Friction 
In the case that the surface between two contact bodies is 

frictionless, the load ratios ~7~ and ~73 cannot exceed zero, be- 
cause no horizontal forces can be applied on these two bodies 
in order to have an equilibrium state. Thus, the contact problems 
in the absence of friction can easily be solved by substituting 
~L = ~73 = 0 into the results obtained in Section 4. 

From (4.4b) and (4.6b) with 77~ = r/3 = 0, we have /3 = 
rn~2 and/3 (~) = ,,,22-(k) which are positive nonzero real numbers 
by (3.12) and (3.8b). Thus, 6 defined in (4.5b)2 will be equal 
to ½ for the frictionless contact surface. Hence, by substituting 

l /3 = /5 = m2"2, 6 = ~ and ~1 = ~73 = 0 into ( 4 . 5 ) - ( 4 . 9 ) ,  the 
solutions to the contact problems in the absence of friction 
can be obtained. For the case of two parabolic elastic bodies, 
simplification of (4.11), (4.13), and (4.14) leads to 

i(Ri + R2) { zZ - (b2/2) } iN 
O;(z) - 2m]2R,R2 z - x / ~ - ~  + 2~. z 2 ~ _  b 2 , (5.1) 

where 

~22(X)  --  R1 + R2 b ~  - x 2 , 

m~2R1R2 
xl < b, (5.2) 

/ 2 m  *2R~RzN 
- a = b  (5.3) 

From (5.2) and (5.3),  we see that the maximum contact pres- 
sure (0-=)m,× occurs at the middle of the contact region. That 
is, when x = 0, we have 

IO'221 . . . .  - -  (Ri + R2)b _ 2N (5.4) 
m *2RIR2 7rb ' 

in which the second equation is obtained by using the relation 
given in (5.3).  
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Knowing that 3 (') ( = m ~ ) )  and/5 (~) ( = m ~ ) )  are real num- 
bers for the bodies with frictionless surfaces, the surface defor- 
mation in the x2-direction given in (4.7) can now be simplified 
by integrating (5.1) with respective to z and letting z = x~. 
The result is 

D ~(2 )  /~ ~(1)  
g*(x) = ,,2,,,22 ,,~,,oz2 x 2, - b  < x < b, 

2m~2RiR2 
X 2 

g~')*(x) = - -  + 2im~12)O2(x-), 
2Rt 

X 2 

g(2)*(x)- 2im~)O2(x ), (5.5a) 
2R2 

where 

iN 
97~ [(x2 - x x f f T -  b2)/b2 

+ l o g ( x + ~ -  b2)], x > b ,  
02(x ) =  (5.5b) 

2/~N [(x: + - X ~ X  2 b2)/b e 

+ log [ x -  x/x g -  b2l],  x < - b .  

By comparing our solutions for anisotropic elastic bodies 
with the solutions provided in Rekach (1979) for isotropic elas- 
tic bodies, it is surprising to find that they are quite similar in 
the solution form and the anisotropy is reflected only through 
the parameter m~2. When we substitute m~: by its corresponding 
isotropic value (given by (4.9) with rh = 0),  we find that our 
solution is identical to that given in Rekach (1979) in which 
the problem was solved by employing the concept of superposit- 
ion of surface Green's  function. It is also possible to apply this 
concept to anisotropic media. In the following, we like to double 
check our solution by employing this concept. 

An Alternat ive Approach.  Because the problem we dis- 
cuss in this section is the contact in the absence of friction, we 
assume the state of surface tractions between the contact region 
have only ~r22 component and crt2 = ~r32 = 0. Let the compressive 
stress ~r22 be expressed by the unknown distributed forces of 
intensity p(x) whose resultant N is given, i.e., 

LP(X)dx = N. 

The stress and displacement field of a half-plane subjected to 
this distributed forces may be found by integrating the solutions 
associated with the point forces. The solution to the anisotropic 
half-plane subjected to a point force applied on the half-plane 
surface can be found in Ting (1996). If the point force p(~)d~ 
is located on (4, 0),  the surface deformation in the x2-direction 
may be expressed by Ting (1996) 

du2(x) = - - l l n  Ix - ~lLz~p(~)d~, 
rc 

along the half-plane surface. (5.6) 

Knowing that the forces applied on the bodies S~ and $2 have 
the same value but opposite direction, by integration of (5.6) 
for bodies St and &, the boundary condition shown in (2.6a)4 
may now be written as 

m~2 
f In Ix - ~ l p ( ~ ) d ~  = g(x), (5.7) 

71" dL 

in which the relation given in (3.13) for m2"2 has been used. 
For the case of two parabofie elastic bodies, substitution of 
(4.10) into (5.7) and differentiation of (5.7) with respect to x 
may lead to 

m~af_' p(~) X(R~ ~2) ox-  < = + 
(5.8) 

The form of the integral Eq. (5.8) is identical to that of the 
corresponding isotropic integral equation (Rekach, 1979). 
Thus, by comparison one may easily prove that the solution of 
the unknown intensity p (x) is exactly the same as that presented 
in (5.2) and (5.3). 

6 Contact in Complete Adhesion 
By the method of analytical continuation presented in Section 

3, we show that the tractions and displacements can be ex- 
pressed in terms of a single sectionally holomorphic function 
vector 0. Through the use of (3 .7h and (3.10),  the boundary 
conditions (2.7) for the contact in complete adhesion may now 
be written as 

O' (x - ) -O ' ( x  ÷) = O, xq~L, 

-i{M*O(x +) + l~I*0(x-)} = g(x) ,  x E L, (6.1a) 

where 

g ( x ) = ( g i x )  } , (6.1b) 

To solve O(z) from (6.1), we rewrite (6.1a)2 into a standard 
vector form of the Hilbert problem as 

O'(x +) + M * - q ~ l * 0 ' ( x - )  = i M * - t g ' ( x ) ,  x E L. (6.2) 

The solution to this Hilbert problem of the vector form is (Hwu, 
1992; Fan and Hwu, 1996) 

fL 1 [Xff(t)]-lM* lg '(t)dt O'(z) = X0(z) t - z 

+ Xo(z)d0. (6.3) 

Xo(z) is the basic Plemelj function satisfying 

Xff(x) = Xff(x),  x ~  L, 

X0~(x) + M* q~I*Xff(x) = 0, x E L, (6.4a) 

whose solution is 

: ( ( /z  or ;) 1 A , (6.4b) 
Xo(z) 4(z - a)(z - b) \ z  - b /  / 

where the angular bracket ( ( ) )  denotes the diagonal matrix in 
which each component is varied according to the Greek index 
a. A = [kt,  k2, k3]. ea and k~, a = 1, 2, 3 of (6 .3d)  are the 
eigenvalues and eigenvectors of (1~1" - e 2~,o M* ) ha = 0. The 
explicit solutions for the eigenvalues e~ are q = - e2 = e, e3 = 
0, and 

e = l n i - 7 ,  y = - t r ( W D - l )  2 , (6.5) 

where tr stands for the trace of matrix. To get a unique eigenvec- 
tor, the normalization ½A.r(M* + I~I*)A = I is used (Hwu, 

1993b). 
To determine the constant vector do in (6.3),  the force equi- 

librium condition may be applied. With reference to the prob- 
lems of half-plane indentation, one may prove that 

do = ~ A - l q ,  (6.6) 
2rri 

where q is the resultant force vector applied on the elastic 
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body SI (or $2). The contact pressure can now be obtained by 
substituting the result of (6.3) into (3.7)1. The contact region 
is then determined by assuming that the stresses vanish at its 
ends. The verification can also be done by specializing the 
present problem to a problem of which the analytical solution 
exists. Similar to t,he problem discussed in Section 4, by letting 
M1 = 0 and g(2) (x) = 0 one may prove that our present 
solutions are identical to those presented in Fan and Hwu 
(1996) for the case of a rigid punch indenting into a half-plane. 

7 C o n c l u d i n g  R e m a r k s  

Note that during the derivation through the method of analyti- 
cal continuation, the argument of each component function of 
O ( z )  is written as z = x + p y  without referring to its associated 
eigenvalues p. .  So are the function vectors f~(z) and f2(z) 
calculated from O ( z )  by the relations given in (3.6). However, 
the general solutions presented in (2.1) show that f~ (z) or f2(z) 
should be in the form of [fl(zl) f 2 ( z 2 )  3~(z3)] r where the 
argument of each component function is written as z. = x + 
PaY,  c~ = 1, 2, 3, in which p .  are the eigenvalues of material 1 
or 2. With this understanding, we know that the replacement 
of zl, z2, or z3 for each component function of fl(z) and f2(z) 
is necessary for any problem found in this paper. For example, 
when we obtain the solution of 0 ~ (z) from (4.5) for the contact 
problems in the presence of friction, we may find 0'~(z) and 
O~(z )  by (4.3). Then, by using (3.6), we have fl(z) = 
-B~-10(z) and fz(z) = B~10(z) in which O ( z )  = [01(z), 02(z), 
0 3 ( z ) ]  T. After getting f~(z) and fz(z), a replacement of z~ i), 
z~ ~), or z~ ~) for each component function of f~ (z), i = 1, 2 should 
be made in order to calculate the field solutions for the stresses 
and displacements from (2.1). 
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A P P E N D I X  A 

Stroh's  F o r m a l i s m  

In a fixed rectangular coordinate system x~, i = 1, 2, 3, let 
u~, a o, c U be, respectively, the displacement, stress, and strain. 
The strain-displacement equations, the stress-strain laws, and 
the equations of equilibrium for anisotropic elasticity are 

' = = O, (A1) e o = 9S(u~,j + uj,~), a o C~ik~%, ~j, j  

where repeated indices imply summation, a comma stands for 
differentiation, and Cuks are the elastic constants which are as- 
sumed to be fully symmetric and positive definite. Consider a 
two-dimensional deformation in which u~, i = 1, 2, 3, depend 
on xl and x2 only, the general solution to (A1) can be written 
as  

6 

u = ~ a J . ( z . ) ,  z .  = x l  + p . x 2 ,  (A2) 
ce=l 

in which f . ,  a = 1, 2 . . . . .  6 are arbitrary functions of their 
arguments and p.  and a.  are the eigenvalues and eigenvectors 
of the following eigenrelation: 

{Q + p ( R +  R r) + p 2 T } a =  0. (A3) 

In (A3) the superscript T stands for the transpose and Q, R, 
T are the 3 × 3 real matrices given by 

Qik : C i lk l ,  R~k : Cilk2, Tik = Ci2~2. (A4) 

Since p.  cannot be real if the strain energy is positive (Eshelby, 
et. al., 1953), p .  occurs as three pairs of complex conjugates. 
We let P.+3 =/7. ,  Im(p~) > 0, a = 1, 2, 3, where an overbar 
denotes the complex conjugate and Im stands for the imaginary 
part. We then have a~+3 = ~ ,  a = 1, 2, 3. For the displacement 
u to be real, we letf.+3 = f~,  a = 1, 2, 3, and (A2) becomes 

3 

u = 2 Re{ ~ a.f .(z.)  }, (A5) 
ce-I 

in which Re stands for the real part. Introducing the vector 

b = (R T + p T ) a  = - 1 (Q + pR)a ,  (A6) 
P 

where the second equality comes from (A3), the stresses ~r 0 
obtained by substituting (A2) into (A1)~ and (A1)2 can be 
written as 
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CTil ~ --(~i,2, 0"i2 = qSi,l, (A7)  

where ~b is the stress function 

3 
~b = 2 Re{ ~ b~f~(z,) }. (A8)  

~=1 

If we introduce a 3 × 1 column vector f ( z )  and two 3 × 3 
complex matrices A and B by 

f ( z )  = { f l (z l ) ,  f 2 ( z 2 ) ,  f 3 ( z 3 ) }  T, 

A =  [al a2 a3], B = [bl be b3], (A9)  

Eqs. (A5)  and (AS) can be written as 

u = 2 R e { A f ( z ) } ,  ~ = 2 R e { B f ( z ) } .  (A10) 

A P P E N D I X  B 

The Explicit Expressions of S and L 
For orthotropic materials, the explicit expressions for S and 

L have been found by Dongye and Ting (1989).  Their solutions 
are written in terms of the elastic constants C~j as follows: 

5 2 1 :  f C66( C1~1C~2 ~ - C12) ]1/2 _ C~22 
LC22(C,2 + 2C66 + ~ )  ' 812 = "VCii 821' 

L1, : ( + : L , , ,  
C u  

L33 = (C44C55)2/2, ( B l )  

and all the other components of S e and L 0 are equal to zero. 

Following the solutions provided in (B 1 ), Hwu (1993a) de- 
rived a more convenient formulae for S and L.  They wrote the 
explicit solutions in terms of the Young's  moduli El ,  E2, E3, 
the Poisson's ratios ui~, and the shear moduli G23, G31, G12. 
Their results are 

812 = --S/~10/2~ 821 = SK20/1, 

Lll = KI0/IE1, L22 = K20/2E2, L33 = G2~3G31, (B2)  

where 

•l = ( E I / G I 2  + 2s E~-E1/E2) -1/2, 

K2 = (E2/G12 + 2s E 2 ~ ' ~ )  -1/2. (B3) 

In the case of generalized plane strain 

0/I = (1 -- /.-"13/.-"31) -1/2, 0/2 = (1 -- U23U32) -1/2,  

S = ~/(1 -- r'13U3~)(1 -- U23U32) 

-- ~/(U21 + U31U23)(Ul~ + U3ZU13), (B4a)  

whereas in the case of  generalized plane stress 

0/1 = 0/2= 1, s = 1 -~uulzu21. (B4b) 

For isotropic materials, E~ = E2 = E,  Gi2 = G23 = G3~ = /z = 
E / [ 2 ( I  + u) ] ,  u23 = u3z = ul3 = u31 = ulz  = u21 = u,  (B2) 
may then be specialized as 

K -  1 
$2~ = -S~2 = - - ,  

K + I  

4# 
= = - - ,  L33 = #. (B5) Lu /-52 1 + K 

where K = 3 - 4u for plane-strain conditions and K = (3 - 
u ) / (  1 + u )  for the generalized plane-stress condition. 
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Dispersion relations for laminated composite plates with transverse matrix cracks 
have been computed using two methods. In the first approach it is assumed that the 
matrix cracks appear periodically and hence it is possible to consider a periodic cell 
of  the structure using Bloch-type boundary conditions. This problem was formulated 
in complex notation and solved in a standard finite element program (ABAQUS) 
using two identical finite element meshes, one for  the real part and one for  the 
imaginary part of  the displacements. The two meshes were coupled by the boundary 
conditions on the cell. The code then computed the eigenfrequeneies of  the system 
for  a given wave vector. It was then possible to compute the phase velocities. The 
second approach used may be viewed as a two step homogenization. First the cracked 
layers are homogenized and replaced by weaker uncracked layers' and then the 
standard first-order shear-deformation laminate theory is used to compute dispersion 
relations. Dispersion relations were computed using both methods for  three glass- 
fiber~epoxy laminates ([0/901e, [0/90]s and [ 0 / 4 5 / - 4 5  ]s with cracks in the 90 and 
+_45 deg plies). For the lowest flexural mode the difference in phase velocity between 
the methods was less then five percent for wavelengths longer than two times the 
plate thickness. For the extensional mode a wavelength of ten plate thicknesses gave 
a five percent difference. 

1 Introduction 
If a composite laminate is strained the first damage which 

appears is often transverse matrix cracking. Other damage types, 
such as fiber fracture and delaminations, will also start to de- 
velop before the laminate finally fails (Eggers et al., 1994; 
Ogihara and Takeda, 1995; Jamison and Reifsnider, 1982). The 
theories developed to describe the laminate during this process, 
especially regarding the evolution of damage, should be vali- 
dated by experiments (Adolfsson and Gudmundson, 1996; Hahn 
et al., 1988; Xu, 1996). 

One possible technique for monitoring the evolution of dam- 
age is acoustic emission. The basic idea behind acoustic emis- 
sion is that any damage process within the material will emit 
sound (stress waves) and by measuring and analyzing the waves 
one can localize and characterize the process. In a classical 
acoustic emission experiment a resonant transducer is used to 
measure the values of certain preset parameters, but there is 
also the possibility of using a broadband transducer and looking 
at the signal in time-domain instead. For a fairly recent example 
see Gorman and Ziola ( 1991 ) or Prosser et al. ( 1995 ). A prereq- 
uisite for either scheme to be successful, however, is that one 
has a detailed knowledge of how waves propagate in the mate- 
rial. A complication with a composite laminate is that the veloc- 
ity of the waves will depend on the frequency (dispersion). 
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This dependence can, of course, be measured but there is also 
a need for a theoretical understanding of how waves behave in 
the material, and it is desirable to know on beforehand what 
velocity to expect at a given frequency. 

Wave dispersion in infinite uncracked anisotropic elastic lam- 
inated plates has previously been studied thoroughly using at 
least two different approaches. In the first approach the full 
three-dimensional equations are solved. One example of this 
approach is the so-called stiffness method by Dong and Nelson 
(1972). The stiffness method, which essentially is a semi-one- 
dimensional finite element method, has been extended and re- 
fined by Datta and co-workers (1988, 1991a, b) to the point 
where it is possible to compute dispersion curves for arbitrary 
laminates and wave propagation directions. Also, a method with 
which standard finite element codes can be used to o compute 
dispersion relations has recently been proposed by Aberg and 
Gudmundson (1997). The second approach is to use a plate 
theory, which may be viewed as a homogenization in the thick- 
ness direction. It is well known that the classical laminated plate 
theory is too stiff when the wavelength approaches the thickness 
of the laminate, and as a remedy a theory including first-order 
shear deformation and rotational inertia is often used (Yang et 
al., 1966; Whitney and Pagano, 1970). In conjunction with the 
first-order shear-deformation theory, shear correction factors are 
often utilized to take the variation of shear stress through the 
cross section of the laminate into account. Whitney (1973) has 
shown one possible way to arrive at shear correction factors. 
The choice of shear correction factor is somewhat arbitrary and 
consequently there has been work on plate theories that do not 
include a shear correction factor. One way to get around the 
need for a shear correction factor is to use higher-order displace- 
ment fields. The drawback is that more displacement parameters 
have to be introduced, and hence the more refined methods, 
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like the discrete layer theory, approach a finite element formula- 
tion as far as degrees-of-freedom are concerned. A comparison 
between different order plate theories may be found in the paper 
by Noor and Burton (1990), and one of their conclusions is 
that a first-order shear-deformation theory with shear correction 
factors according to Whitney provides a fair prediction of the 
gross response for a wide variety of laminates. In conclusion, 
wave propagation in uncracked laminates seems to be fairly 
well understood and there are good tools available for prediction 
of dispersion curves. 

Analyses of laminates with transverse matrix cracks have so 
far mainly been focused on static properties such as loss of 
stiffness due to cracks. For a review see Abrate (1991). A 
closed-form estimate of the loss of stiffness of a general lami- 
nate with periodic cracks was proposed by Gudmundson and 
Zang (1993) and has since been extended and validated in a 
series of works by Adolfsson and Gudmundson (1994, 1995, 
1996, 1997). They have, among other things, proposed a way 
to take the loss of stiffness into account in classical laminate 
theory (Adolfsson and Gudmundson, 1997). 

Dispersion in solids with several cracks has received attention 
in the literature (Smyshlyaev and Willis, 1993; Achenbach and 
Li, 1986), but to the authors' knowledge there are few works 
that focus on dispersion in laminates with transverse matrix 
cracks. One exception is Aboudi (1988), where Legendre poly- 
nomials are used to describe the local deformation in a subcell 
of a composite material with imperfect bonding (cracks). 
Curves are presented showing the transient behavior of a wave 
traveling through the material, but unfortunately dispersion 
curves are not given for this case. 

The present work will focus on dispersion in laminated plates 
with transverse matrix cracks. The work is divided into two 
basic parts. In the first part it is assumed that the cracked lami- 
nate can be approximated by a linear elastic laminate containing 
a periodic distribution of cracks and the effects of crack closure 
will be ignored. Thus the problem is linear. Ignoring the effects 
of crack closure seems justifiable in laminates because residual 
stresses will usually keep the cracks open and the displacements 
due to wave motion are usually small. The periodicity assump- 
tion is based on the observation that transverse matrix cracks 
most often appear fairly evenly spaced. Having made those 
assumptions the laminate is modeled by a periodic unit-cell and 
the procedure using finite elements described by Aberg and 
Gudmundson (1997) is used to compute dispersion relations 
for glass fiber reinforced epoxy laminates. In the second part 
the stiffness estimations by Gudmundson and Zang (1993) and 
the first-order shear-deformation laminated plate theory with 
shear correction factors according to Whitney (1973) are used 
in conjunction to arrive at a first-order shear laminate theory 
for transversely cracked laminates. This is then applied to the 
same laminates as the finite element computations and the re- 
sults are compared. 

2 Periodic Distribution of Cracks 

The scheme outlined and derived in this section is applicable 
to the general problem of harmonic wave propagation in linear 
elastic materials with a periodic geometry. It is the same proce- 
dure as used in an earlier work by the authors, and it is presented 
here for sake of clarity. 

2.1 Governing Elastic Equations. A periodic structure 
made of one or several linear elastic materials is considered. 
By a periodic structure it is meant that the structure can be 
divided into identical finite-sized periodic cells, and therefore 
one single cell can be used to describe the whole structure (see 
Fig. 1 ). The governing equations at a point in the structure are 

Periodic cell 

Fig. 1 
cell 

Periodic structure 

Example of a periodic structure and a corresponding periodic 

where 

021~i 
O-ij, j = 10 (~t2 ' 

o" 0 = Cokte u 

(1) 

(2) 

I ekl = ~(Uka + Ul,~). (3) 

Here e~ is the stress tensor, ek~ the strain tensor, u~ the displace- 
ment vector, C~jkt the stiffness tensor, and p the density. In all 
tensor equations the usual summation convention is assumed 
and differentiation with respect to a Cartesian coordinate is 
denoted by a comma. Note that the stiffness and the density 
depend on position periodically. Now consider solutions of the 
form 

u.,(x,,, t) = U m ( x , , ) e - %  (4)  

where Urn(x,,) is complex valued and x,, is the position vector. 
As a consequence the stresses and the strains will be given by 

cr~j(x,,, t) = X~(x,,)e -~ '  (5)  

and 

e~j(x,,, t)  = Eo(x , , ) e  i~,t. (6) 

The equations of motion may now be written as 

Zi j , j  "JV Do.)2Ui  = 0 ,  (7) 

Zo = Cijkt Ekl ( 8 )  

and 

Ek I 1 = ~(Uk.t + Ul.k). (9) 

The periodic structure is divided into periodic cells. Due to 
the periodicity in Cijkt and p the displacement at equivalent 
points in different periodic cells are related through 

U,,(x,,) = Urn(x,, + 1,,)e-lk"/J, (10) 

where k denotes the wave number, n; the direction cosines of 
wave propagation, and l; is the vector connecting equivalent 
points in the periodic cells. From Eqs. (8) and (9) it follows 
that the stresses in the points under consideration satisfy an 
equivalent periodicity relation, thus 
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Xu(x.) = Eo( x" + 1.)e-i%lJ. (11) 

A single periodic cell is now considered. For each point on 
the boundary of the cell there exists an equivalent periodic point 
for which the relations (10) and (11) are valid. For corner 
points of the cell, in particular, there exists more than one 
equivalent periodic point. Excluding for a moment the corner 
points, the pair of equivalent points on the boundary of the 
periodic cell have outward normal vectors in opposite direc- 
tions. Hence the traction vector components. S,., defined by 

& C x . )  = x,,u(x.)u~, (12) 

where vj denotes the outward normal vector, satisfy the follow- 
ing periodicity equation. 

Sm(Xn) = -S in( . .  ~ + l .)e-ik"/J (13) 

Equations (10) and (13) give the boundary conditions on the 
periodic cell. Because very few of the standard finite element 
programs in solid mechanics handle complex valued fields, the 
displacement and other fields are split into real and imaginary 
parts. That is 

UmCx.) = U~°Cx.) + iU)2 (x . ) ,  (14) 

s . , ( x . )  = s~dCx.) + i s~"(x . ) .  (15) 

In doing this, Eq. (7) separates into the equations 

{X~ ° p~2U~°  0 'J'J + = (16) 
~j,mj + po32ulm .~_ O, 

for the real and imaginary parts, respectively. The boundary 
conditions (10) and (13) split into 

Re Re (knjlj) + Ulmm(x. + 1,,) sin (knflfl ~- U m (Xn + Um (x,,) l,,) cos 

- U m  (X. + /,,) sin (knjIj) vLmCXn)  lm (knjlj) Re = U., (x,, + l.) cos 

(17) 

and 

I Sle(x,,  + l.) = --s,R.°(X.) COS (knflj) + S ~ ' ( x . )  sin (knjlj) 

S,;~(x,, + l,,) = --s~m(x.) COS (knj1j) - S~°(x . )  sin (knflj).  

(18) 

2.2 Finite Element Formulation. It is now observed that 
the real and imaginary parts are uncoupled in Eq. (16), and 
therefore it is possible to solve the eigenvalue problem defined 
by Eqs. (16), (17), and (18) using two identical, unit cell 
shaped, finite element meshes, one for the real part and one for 
the imaginary part. If the boundaries of the two meshes are 
coupled by the displacement boundary conditions in (17) the 
boundary conditions for the tractions are fulfilled automatically 
due to the way that most standard finite element codes imple- 
ment condition (17). 

In order to highlight this, consider the two identical, for clar- 
ity two-dimensional meshes in Fig. 2 representing a quadratic 
unit cell. The finite element formulation of (16) is 

Furl Fvrl 
l u r l  Ivr°l 

( [ [ ~ ]  o ]  ~F[M] 0 ] ) i . + o i  = iv+ol 
- lu+m/ /Ptm/ 

tKa ~ L 0 tml lu~m/ /Vim I 

t_u~mJ LPrJ 
(19) 

Here the vector uR% the real part of the displacement, is patti- 

Re Re 
-u2 ' -P2 

Im Im 
~u2 ' ~P2 

i I I r r r I  : 

m l  

i [  , Im Im r - 
• -Ui ': J~i : 

Re Re Im Im 
-ul ,P-1 ~ l  ,P - i  

Fig. 2 Principle of the division and labeling of nodal displacements and 
nodal forces 

tioned into up °, Ux R° and u~ ~ denoting the internal nodes, the 
nodes of set 1 and the nodes of set 2, respectively. The real 
parts of the corresponding nodal forces are labeled ppe, p~te 
and P~e. The imaginary counterparts have the superscript " Im"  
instead of "Re."  The submatrices [K] and [M] are the stiffness 
and mass matrices, of a single mesh. respectively. The boundary 
conditions (17) have the following appearance: 

u,"°l 
u~°l 
u~°I Ulml 
U~" I u~mj 

Fu~o7 
lu~Ol 

= EQ] lu~ml 
LUCI 

The constraint matrix [Q] can be schematically written as 

[l] o o o ] 

[Q] = [11 0 
0 [i] ' 

° 0 

(20) 

(21) 

where [C] and [S] are diagonal block matrices containing the 
cosine and sine factors of (17) and [I] is the identity matrix. 
Substitution of (20) into (19) and premultiplication by [Q] r 
yields the following system of equations: 

Furl 
[ Q ] r ( [ [ K ]  0 ] [ [M]  0 ]) |U~| 

_ ~2 tO]/uP/ 0 [K] 0 [M] 
l.u~mJ 

F [C]P~° + P~° - [Slp~m (22) 

L[c]P~ m + + [ s l e ~  ° 

When a standard finite element code computes the e~gen- 
frequencies and eigenmodes the vector on the right side of Eq. 
(22) is set to zero. In (22) this corresponds to an absence of 
body forces on the internal node set and the fulfillment of the 
traction boundary conditions in Eq. (18). In other words, the 
boundary conditions of Eq. (18) are automatically fulfilled if 
Eq. (17) is fulfilled. 

Thus, by having two identical finite element meshes and 
implementing the constraints of Eq. (17), the eigenfrequencies 
a~, which can be shown to be double eigenvalues, can be com- 
puted for any given wave number, k, and wave direction, nj. 
This procedure makes it possible to compute the dispersion 
relation for the periodic structure. 
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In the case of a plate the vertical boundaries of the cell (see 
Fig. 1 ) will be connected through Eqs. (17) and (18), and the 
horizontal boundaries will be free. 

3 L a m i n a t e d  Plate  T h e o r y  

The finite element computations have limitations. The fact 
that each ply must be modeled with a fair amount of nodes puts 
a practical limit on the number of possible plies in the studied 
laminate. There are also limitations due to the periodicity as- 
sumption. If Eq. (10) is studied it is seen that there is no point 
in increasing k beyond the value 7r/nfl~ because of the periodic 
nature of the boundary condition and the symmetry of the cell 
regarding propagation direction. Since the cracked laminates in 
reality are not perfectly periodic, this puts a lower limit on the 
wavelength. 

Dispersion computations based on first-order shear-deforma- 
tion laminate theories, on the other hand, are very inexpensive. 
Also, since there is no structural periodicity in the equations, 
there is no lower limit to the wavelength. The trade-off is that 
the stiffness variation in the thickness direction is smeared out, 
and thus the influence of the layer nature of the laminate and 
the geometry of the cracks on wave propagation is lost. 

3.1 Dispersion Calculations by Laminate Theory. The 
details concerning the equations below may be found in the 
work of Whitney and Pagano (1970) and Whitney (1973). 
Here an infinitely large laminated plate in the x-y plane without 
external loads is considered. The displacements are assumed to 
be 

u - u°(x,  y, t) + zOx(x, y, t) 

v - v°(x,  y, t) + Zqty(x, y, t) 

w = w°(x ,  y, t). (23) 

The in-plane stress resultants ( N ,  Ny, and N~.) and bending 
moments ( M ,  M~, and May) are defined in the usual manner 
and are given the notation 

N =  N,, and M =  M~. . (24) 
N.~,. M;,. 

The assumed displacement fields result in the following in- 
plane strains (e~, % and % 0  and curvatures (tq, Ky, and K~): 

Ou ° Ov ° Ou ° Ov ° 
~ = - -  £ y  = - -  3 "  ~ - -  - -  --l- - -  

Ox Oy Oy Ox 

o0~ oO,, 04,~ o4,, 
- -  + (25) 

K . ~ -  Ox u;y Oy f f x y -  Oy Ox ' 

which are also collected in vectors according to 

= ey and K = K y  . 

y,,. K~y 
(26) 

The stress and moment resultants are connected to the strains 
and curvatures through the usual stiffness matrix in laminate 
theory 

[:]=[: :]I:l (27) 

where the submatrices A, B, and D are defined as 

JAil Ai2 Ai6] [ B , ,  Bi2 Bi6] 
A = /A12 A22 A26[ B = B12 B22 B26 1 

L AI6 A26 A66_I Bi6 B26 B66 ..] 

I Dll Dl2 D i 6 ]  
D = D12 Dee De6[ • (28) 

D16 D26 D66A 

In the first-order shear-deformation theory according to Whitney 
( 1973 ), out-of-plane shear forces (Qr~ and Qx~) and strains (%,: 
and ,y~:) are related according to 

[QQ~i] = [ kzA44 k2klAms][Yi"~ ] (29) 

[kzklA45 k2iA55 J k Y  z_l ' 

where 

_ _  Ow ° OtO x Ow° 0qr' and yx; - -  + (30) 
YY~ = Oy + Oy Ox Ox 

The expressions for the stiffnesses (A44, A45, and A55) and the 
shear-correction factors (k 2 and kj ) are found in Whitney (1973) 
(there are misprints in Eq. (6) and the equation below it). 

In the case of harmonic wave propagation, it is further as- 
sumed that the displacement functions take the form 

(u °, v °, w °, ~ ,  ~.)  = (U, V, W, qJ~, ff2y)e i(k~+k,'y ~o, (31) 

where the capital letters are complex-valued constants, k, and 
ky are the x and y-components of the wave vector and ~ is the 
circular frequency. Substituting Eq. (31 ) into the equations of 
motion for the laminate yields the following generalized eigen- 
value problem 

/ 

[ 'x, ,  x12 
] K i 2 K22 
]Kl3 K~3 
1K14 K2.~ 
LKi5 K25 

Kl3 K14 K151 
K23 K24 K251 
K33 K34 K351 

-K34 K44 K,s]  
- K ~  K ~  K~_I  

-ph 0 0 

0 ph 0 

0 0 ph 

0 0 0 

0 0 0 

0 

0 

0 

12 

0 

0 

12 

/.I/y [° 1 = o ° , 

0 0 

(32) 

where p is the density, which is assumed to be the same in all 
plies, and h is the thickness of the laminate. The Kijs, which 
depend on the wave vector and laminate stiffnesses, are given 
by 

Kii - Aijk 2 + 2Airkxky + A 6 6 k ~ ,  

K12 = a16k~ + (al2 + A66)kxky + Az6k~ 

x13 = 0, x14 = Bllk~ + 2Rl&ky + ~66k~, 

K15 = Ba6k~ + (B~2 + B66)k~ky + B26k~. 
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K= = A66k~ + 2Az6k~ky + A22k2y, K23 = 0, 

K24 = Blak2x + (B66 + B12)kxk r + B26k~ 

K25 = B66k~ + 2B26kxky + B2~k~, 

K33 = a55k~k2x + 2A45klk2kxky + A44k~k~ 

1{34 = - i (Assk~k ,  + Ansklk2ky), 

K35 = -i(An4k~ky + Agsklk2kx) 

K44 = Ollk  ~ "q- 2D,6kxky + D66k~ + Assk{, 

K45 = 0~6k~ + (O12 + D66)kxky + D26k~ + A4sk~k2 

K55 = D66k~ + 2D26kxky + D22k~ + A44k~. (33) 

For given wave vector components, k~ and ky, the generalized 
eigenvalue problem of equation (32) gives five real-valued eig- 
enfrequencies (note that K is Hermitian), w, corresponding to 
five dispersion curves. 

3.2 Stiffness Reduction due to Cracks. The presence of 
transverse matrix cracks will reduce the stiffness of the lami- 
nate. Gudmundson and Zang (1993) have given closed-form 
approximate expressions for the effective stiffnesses (three-di- 
mensional and plane-stress stiffnesses) of such laminates. The 
method may briefly be described as follows: First exact formu- 
las for the reduced effective stiffness of a cracked laminate are 
derived based on the difference in global strain of a cracked 
and an uncracked laminate when subjected to a constant stress. 
The difference in global strain can be expressed in terms of 
average crack-opening displacements in the cracked laminate. 
An approximation regarding the crack-opening displacements 
is then introduced. The crack-opening displacements are taken 
from the known case of an infinite row of vertical cracks, each 
subjected to constant traction on the crack surface. Thus, the 
main approximation is that there is no interaction between 
neighboring plies as far as the cracks are concerned. The expres- 
sions of Gudmundson and Zang (1993) are applicable to any 
laminate lay-up and to laminates with both internal and surface 
cracks. Adolfsson and Gudmundson (1995) have investigated 
the accuracy of the model by finite element computations and 
experiments and found that it provides good estimates of the 
effective stiffness. 

Adolfsson and Gudmundson ( 1997 ) have also taken bending 
into account and developed a version of the classical laminate 
theory including the effects of transverse matrix cracking. This 
is done by extending the scheme of Gudmundson and Zang 
(1993) and take linearly varying stresses on the crack surfaces 
into account also. This approach will give the same A matrix 
(see Eq. (27)) as the two-step homogenization outlined below, 
and will yield better values for the B and D matrices than the 
two-step homogenization, but it does not give the crucial shear 
stiffnesses of Eq. (29). 

The effective stiffnesses of Gudmundson and Zang (1993) 
can be used to develop a first-order shear-deformation laminate 
theory with shear correction factors. The idea is quite simple. 
Since the expressions by Gudmundson and Zang (1993) are 
applicable to any laminate and there is no interaction between 
neighboring plies it is also applicable to the special case of a 
single cracked ply, whether it is a surface ply or an internal 
ply. Therefore one can first calculate the stiffnesses of the 
cracked layers one by one, using the expressions of Gudmund- 
son and Zang (1993), and then use those stiffnesses and the 
stiffnesses of the eventual uncracked layers to calculate plate 
properties. Thus, it may be viewed as a two-step homogeniza- 
tion. This is shown schematically in Fig. 3. In the first step the 
cracked layers with material stiffness Cukt are homogenized and 
replaced by uncracked layers with material stiffness rc,~kCd i j k l  , 

and in the second step the regular homogenization of the first- 

order shear-deformation laminate theory (Whitney and Pagano, 
1970; Whitney, 1973) is employed. 

There is one problem with this scheme. The out-of-plane 
shear stiffness for a single surface layer with cracks (such as 
the top layer in Fig. 3) are not possible to compute using the 
method of Gudmundson and Zang (1993). To keep things sim- 
ple the out-of-plane shear stiffnesses of a surface cracked ply 
are estimated by out-of-plane shear stiffnesses of an internally 
cracked ply with twice the thickness. It should be noted, how- 
ever, that the largest transverse shear stresses appear in the 
middle of the laminate and hence the approximations related to 
the surface layers regarding transverse shear should not be too 
crucial. 

Once the laminated plate stiffnesses are known for the 
cracked laminate Eq. (32) is used to find dispersion relations. 

4 Results 
In this section results of both methods for three different 

lay-ups ([0/90]s, [0/90]2 and [ 0 / + 45 / - 45 ] s )  of glass-fiber 
laminae are presented. The material parameters of the plies may 
be found in Table 1. The results are presented in the form 
of diagrams displaying dimensionless phase velocities versus 
dimensionless wave numbers. The dimensionless parameters 
are defined as 

E = w_ ./p- (34) 
k VEL 

and 

k kh (35) 
27r 

where co is the eigenfrequency and k is the wave number, as 
defined earlier. The thickness of the plate is h, and p and EL 
are the density and elastic modulus in the fiber direction, respec- 
tively. 

For each lay-up different degrees of cracking was considered. 
The crack density, 6~, in a ply (k) is here defined as 

tk (36) 
6k = d~ ' 

where tk is the thickness of ply k and d~ is the average distance 
between cracks in the ply. Thus, for an uncracked ply 6k is zero. 

For all laminates considered, the direction of wave propaga- 
tion was the 0 deg direction (i.e., the fiber-direction of the top 
layer) and the three so-called acoustical modes are presented. 
The methods presented set no restriction to the direction of 
wave propagation. Due to space limitations, however, only some 
representative results are presented here. For low frequencies 
the lowest acoustical mode corresponds to a flexural wave, the 
next lowest to an in-plane shear wave, and the highest to an 
extensional wave. In some cases the dispersion curves of the 
so-called optical modes cross the curve of one or more of the 
acoustical modes, but for clarity reasons the crossing optical 
modes are not presented here. 

4.1 Crossply Laminates. Two crossply laminates were 
considered; [0/90Is and [0/90]2 with cracks in the 90 deg plies. 

4.1.1 The [O/90]s Laminate. In Fig. 4 the results of the 
laminate theory (dashed) and the finite element computations 
(solid) are compared for different crack densities, 6> In dia- 
grams a, b, and c the crack densities in the 90 deg ply are 0, 
0.5, and 1, respectively. The reason for abruptly ending the solid 
finite element curves in diagrams b and c can be understood in 
view of the periodicity of Eq. (10) and the discussion of it in 
the beginning of Section 3. In diagram a the dashed and the 
solid curve are on top of each other for the in-plane shear mode. 
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Fig. 3 A schematic picture of the two-step homogenization 

Table 1 Properties of the glass fiber reinforced epoxy ply 

El. E,r Gt.-r p 
(GPa) (GPa) vl,7. V~-c (GPa) (kg/m ~) 

46 18 0.29 0.42 7.9 1930.16 

1.0 

~" 0.5 

0.0 0.5 1.0 1.5 

~" 0.5 

0,0 

f 

0.5 

C 
t.0 

~" 0.5 

0.0 0.5 1.0 

Fig. 4 Results for the [O/90]s laminate with cracks in the 90 deg plies. 
A comparison between the laminate theory (dashed) and finite element 
computations (solid) for different crack densities (a: ~ = O, b :  6 - 0,5 
a n d c : ~ =  1).  

Figure 5 shows the finite element results for the three different 
crack densities in the same diagram. The solid, dashed, and 
dotted line correspond to 6k equal to 0, 0.5, and 1, respectively. 

4.1.2 The [0 /90]2  Laminate .  Figure 6 shows the results 
of the laminated plate theory (dashed) and the finite element 
computations (solid). In diagrams a, b, and c the crack densi- 

1 .0  

" , . \  

~' 0.5 

0.0 0.5 1.0 1.5 

Fig. 5 Results for the [0/90]s laminate with cracks in the 90 deg plies. 
Finite element computations for crack densities of 0 (so l id ) ,  0,5 
(dashed), and 1 ( d o t t e d ) .  

ties in the 90 deg plies are 0, 0.5, and l, respectively. In diagram 
a the dashed and the solid curves are on top of each other for 
the in-plane shear mode. 

In Fig. 7 the finite element results for the three different 
crack densities are shown. The solid dashed and dotted line 
correspond to 6k equal to 0, 0.5, and 1, respectively. 

4.2 [ 0 / + 4 5 / - 4 5 ] s  Laminate. A [0 /+45 / -45 ] s  lami- 
nate with cracks in the _+45 deg plies was also analyzed. The 
average distance between the cracks was the same in both types 
of plies, and therefore according to definition (36) the crack 
density in the -45  deg ply was twice the density in the +45 
deg plies. 

Figure 8 shows finite element (solid) and laminate theory 
(dashed) results. The crack densities in the -45  deg ply was 0 
in diagram a and 1 in diagram b. 

The results of the finite element computations for crack densi- 
ties in the -45  deg of 0 (solid) and 1 (dashed) are shown in 
Fig. 9. 

5 Discussion 

An interesting question is if the cracks themselves influence 
the dispersion relations directly or if their only effect is seen 
as a reduction in global stiffness. Figures 5, 7, and 9 indicate that 
at the studied wave lengths the cracks mainly reduce stiffness, 
because at higher crack densities there is a downward shift of 
the curve due to less global stiffness, but the shape of the curve 
is kept. 

Looking at the general shape of the dispersion curves in Figs. 
5, 7, and 9 it is seen that the flexural mode curve basically 
looks like the dispersion curve of a homogeneous plate. The 
in-plane shear mode shows very little or no dispersion. This is 
not surprising because the traction boundary conditions between 
neighboring plies and on the surface are trivially fulfilled in 
this case, and hence the wave is not affected by the differing 
shear stiffnesses or the free surface. 
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a 1.0 

0.5 

0.0 0.5 1.0 1.5 2.0 

b 1.o 

0.5 

0.0 f f  LTT 
0.5 1,0 

1.0 

c- 0,5 

0.C ' ' ' 015 . . . .  1.0 

Fig. 6 Results for the [0/90]s laminate with cracks in the 90 deg plies. 
A comparison between the laminate theory (dashed) and finite element 
computations (solid) for different crack densities (a: 8 = O, b :  & = 0.5 
a n d c : 6 =  1) .  

1.0 

" =  ~ " ~ ' ~ ' 3 " ~ >  " " ,  ~ - .  \ 

0 . 5  " . ,  .~ 

0 . 0  . . . .  ' . . . .  
0 , 5  1 ,0  

Fig. 7 Results for the [0/90]s laminate with cracks in the 90 deg plies. 
Finite element computations for crack densities of 0 (solid), 0.5 
(dashed), and 1 (dotted). 

The most striking feature of the extensional wave dispersion 
curves in Figs. 5, 7, and 9 is that they show a drop at wave- 
lengths, N = 3.5h (h is the thickness of the laminate). For small 
wavelengths the plate nature of the structure is not felt by the 
wave, and it will then move as a slower surface or a Stoneley- 
type wave. A possibility to better capture the drop in the disper- 
sion curve for the extensional mode would be to apply a higher- 
order theory for extensional motion; for example, the model 
presented by Kane and Mindlin (1956). 

The laminated plate theory may be viewed as an approxima- 
tion of the finite element solution, at least down to moderate 

1.0 

0.5 

0 . 0  
0 , 5  1 .0  1 .5  

b 1 . 0  . . . . .  

0 . 5  

o.o . . . .  0:5 . . . .  £o  . . . .  l'.s . . . .  2.0 

Fig. 8 Results for the [0 /+45/ -4512 laminate with cracks in the _+45 
deg plies. A comparison between the laminate theory (dashed) and finite 
element computations (solid) for uncracked (a) and cracked laminate 
(b: 8 = 1 in the -45  deg ply). The crack density in the +45 deg plies is 
half the crack density in the -45  deg ply. 

1.0 

0.5 

Z ~ _ = - - _ = =  

0.C , , , , i , , , , i , , , , 
0 .5  1 .0  1 .5  

Fig. 9 Results for the [0 /+45 / -45 ]s  laminate with cracks in the _+45 
deg plies. Finite element computations for uncracked (solid) and cracked 
laminate (dashed). 

wavelengths. Figures 4, 6, and 8 show comparisons between 
the laminated plate theory results and the finite element compu- 
tations. In all cases the flexural wave phase velocities are esti- 
mated rather well by the laminated plate results (with the excep- 
tion mentioned earlier) even at relatively short wavelengths. In 
diagram c in Fig. 4, for example, there is less than five percent 
difference in phase velocity at k = 2h. 

The phase velocity of the in-plane shear wave is estimated 
well by the laminated plate theory, at least for the crossplies. For 
the cracked [0 /+45 / -45 ] s  laminate there is less five percent 
difference in phase velocity at N = 3h. 

For the extensional mode the laminated plate theory predicts 
no dispersion for the symmetric laminates and slight dispersion 
for the [0/90]2 laminate. This estimate breaks down when the 
extensional wave dispersion curves of the finite element compu- 
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tations start to drop. For the symmetric laminate there is less 
than five percent difference at h = 7h. The situation for the [0/ 
90]2 laminate is somewhat better. 

6 Conc lus ions  

Dispersion relations for three types of laminates with trans- 
verse matrix cracks have been calculated using two different 
methods. The first method approximates the cracked laminate 
with a periodically cracked laminate and then a periodic cell is  
analyzed using finite elements. The second method may be 
viewed as a two-step homogenization. First the cracked plies 
are replaced by plies without cracks but with less stiffness, and 
then a regular first-order shear-deformation plate theory is used 
to arrive at dispersion relations. 

Based on the finite element computations it is concluded that 
there is a noticeable drop in phase velocity with increasing 
crack density. Also, for a given crack density, there is a rather 
sharp drop in phase velocity for the extensional wave as the 
frequency increases. 

The laminate theory resulting from the two-step homogeniza- 
tion provides good estimates for different crack densities for 
the phase velocity of the important flexural wave and the in- 
plane shear wave. The estimation of phase velocities of the 
extensional wave is poor from the point where the curve drops. 
If one deals with wave propagation in finite-sized cracked lami- 
nates, for example in an acoustic emission experiment, it seems 
unrealistic to model the cracks and the laminate in detail and 
hence some kind of homogenization is needed. The laminate 
theory presented here is one such homogenization, and it could 
be used to model finite-sized cracked laminates. 

The results presented here will ultimately have to be checked 
against experiments. It is possible that crack closure, which is 
neglected here, plays an important role. A second important 
aspect is that real laminates are not periodically cracked, and 
hence some of the results of the finite element computations 
could be artificial. 
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Plasticity of Particle-Reinforced 
Composites With a Ductile 
Interphase 
A homogenization theory is developed to determine the overall elastoplastic be- 
havior o f  a particle-reinforced composite with a ductile interphase. Unlike most 
existing homogenization theories which are primarily concerned with the ordinary 
two-phase composites, the present one is confronted with two ductile phases, with 
one enclosing the other. The theory is developed with the aid o f  a linear compari- 
son composite using afield-fluctuation method to calculate an energy-based effec- 
tive stress of  the ductile phases. In order to examine its accuracy, an exact elastic- 
plastic analysis under dilatational loading is also developed, and it was found 
that, despite its simplicity, the theory could provide plausible estimates for  the 
overall behavior of  the three-phase composite. The theory is applicable to a 
composite system regardless whether the interphase is more ductile or stiffer than 
the matrix, and when the interphase is more ductile, it is shown that even the 
presence of  a thin layer can have a very significant effect on the plasticity o f  the 
overall composite. 

1 Introduction 
There has been some progress in the development of homoge- 

nization methods to estimate the nonlinear elastoplastic behav- 
ior of two-phase composites. Most notable among these contri- 
butions are perhaps the variational approaches of Talbot and 
Willis (1985), Willis (1991, 1992), and Ponte Castafieda 
( 1991, 1992). The former approach was developed from Hashin 
and Shtrikman's ( 1963 ) variational principle in elasticity, while 
the latter was built from a linear comparison composite. These 
approaches have been further refined--though with some added 
complexities--to a higher accuracy with the introduction of a 
nonlinear comparison material or pushed to a higher-order range 
(Talbot and Willis, 1994, 1997; Ponte Castafieda, 1996). Most 
problems which they have specifically examined are of the in- 
clusion/matrix type, notwithstanding that their theories are ap- 
plicable to other microgeometries as well. The direct secant- 
moduli method as suggested by Tandon and Weng (1988) and 
Weng (1990), and later improved by Qiu and Weng (1992), 
has also been primarily concerned with the inclusion/matrix 
type where Eshelby's (1957) solution plays a prominent role. 
Such is also the case with the pairwise-interaction approxima- 
tion developed by Ju and Chen(1994), and the generalized self- 
consistent scheme of Herve and Zaoui (1990) and multilayered 
formulation of Bornert et al. (1994). 

Despite these and other developments, it is evident that 
the influence of a ductile interphase on the overall elas- 
toplastic response of the composite has never been ad- 
dressed before. This issue is of some practical importance 
as the property of the matrix near the interface may change 
significantly due to diffusion or oxidation. Such a distinct 
interfacial zone may also be intentionally introduced to im- 
prove the strength or toughness of the composite. Motivated 
by this observation, the objective here is to develop a ho- 
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mogenization scheme for the overall elastoplastic behavior 
of such a layered system. 

The direct secant-moduli approach makes use of a linear 
comparison matrix whose elastic moduli are set equal to the 
homogenized secant moduli of the ductile matrix at every stage 
of deformation. The values of the secant moduli of a ductile 
phase depend on its homogenized effective stress. Qiu and 
Weng (1992) defined this quantity based on the equivalence of 
the distortional energy between the homogenized medium and 
the heterogeneously deformed phase. This "energy-based" 
definition--in contrast to the "mean-stress" approach based 
on the mean deviatoric stress--has been called an "energy 
approach." At present there exist two methods to evaluated this 
quantity. The first one is the global energy equivalence between 
the composite system and its constituent phases as also sug- 
gested by Qiu and Weng, and the second one is the "field- 
fluctuation method" recently advanced by Hu (1996). The for- 
mer method can only apply to a two-phase composite, and the 
evaluation is complete only when the matrix is incompressible. 
Hu's method is a better one; it is applicable to a multiphase 
composite regardless of the compressibility of the ductile phase, 
and the evaluation is always complete. With an incompressible 
matrix, Qiu and Weng (1992, 1995) have proved that their 
approach provided results which are identical to Ponte Cas- 
tafieda's bounds or estimates, but with a compressible matrix it 
was after Hu has completely evaluated the effective stress that 
such a connection was also established. In a separate develop- 
ment, Suquet (1995, 1996) has introduced a "modified secant 
moduli" theory and established a direct link with Ponte Cas- 
tafieda's variational procedure. Suquet's effective stress was 
based on the "second moment" of the stress field which is 
identical to the energy-based definition of Qiu and Weng, and 
it was evaluated by a method identical to Hu's. In essence, 
when the effective stress of a ductile phase is defined by the 
energy-based approach and is evaluated by Hu's or Suquet's 
method, the direct secant-moduli approach is exactly equivalent 
to Ponte Castafieda's variational procedure. 

In this study both the matrix and the interphase will be al- 
lowed to have their independent elastoplastic properties. The 
theoretical development was motivated by the work of Qiu and 
Weng (1992) and Hu (1996), but as stated above it turned out 
to be identical to Ponte Castafieda's variational procedure and 
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Suquet's modified secant moduli method. The developed theory 
will be applied to uncover the effect of the ductile interphase 
on the overall response of the three-phase system. 

2 Constitutive Equations of the Ductile Phases 
The representative volume element of the three-phase com- 

posite is taken to be of the concentrated sphere model, where 
the spherical particle is referred to as phase 1, the interphase 
as phase 2, and the regular matrix as phase 3. The volume 
concentration of the rth phase is denoted by cr and, with a,. 
further representing its outer radius, one has 

Cl : (al/a:~) 3, c2 = (a~ - a~)/a~,  

c3 = 1 -- (Cl + c2). (1) 

All constituent phases will be taken to be isotropic, with 
the bulk and shear moduli denoted by K,. and #,. for the rth 
phase. The plastic stress-strain relations of the ductile in- 
terphase and matrix are represented by the modified Ludwik 
equation as 

a~. '') = a~. ") + hr" (e~(")) '',, r = 2, 3 (2) 

where cr~ ') , h,. and nr(0 -< n,. ~ 1 ) are the tensile yield stress, 
strength coefficient, and work-hardening exponent, in turn, of 
the rth phase. The effective stress and plastic strain am defined 
as usual 

O_ ~.,. ) : t2(T~jr3 t(r) O'q'(r)lJ 1/2 , e~(r) = t3~( j r  ~P(" ) .8 . ( " )  l ~ , a  1 1/2 , (3) 

in terms of its deviatoric stress orb ('~ and plastic strain e~j ('). 
The stress-strain relation of the composite with a ductile in- 

terphase will be calculated using the secant moduli approach 
originally used by Berveiller and Zaoui (1979) and Weng 
(1982) for polycrystal plasticity and by Tandon and Weng 
(1988) for particle-reinforced plasticity. In this regard, the se- 
cant Young's modulus of the rth phase is given by 

o- ~r) 

E~i = °~") - - +  E,. (cr}/') - °'~") ) 11~'' hr (4) 

in terms of its elastic Young's modulus, E,.. The secant shear 
modulus and the secant Poisson's ratio follow as 

#~:-2(l+y~)' ~,;:=~- -u,. ~ ,  (5) 

from the isotropic relations and plastic incompressibility, u,. 
being the elastic Poisson's ratio. 

3 The Linear Comparison Composite 
In order to evaluate the effective elastoplastic properties of 

the three-phase solid, a linear comparison composite bearing an 
identical microgeometry as the nonlinear one will be used. The 
inclusion phase in the comparison composite is taken to have 
the same elastic properties as the original inclusions, and so are 
the bulk moduli of the interphase and matrix. The shear moduli 
of the interphase and matrix in the comparison composite, how- 
ever, are set equal to the homogenized secant shear moduli of 
their corresponding phases in the original nonlinear composite. 
These secant moduli are calculated from their respective consti- 
tutive equations at a given homogenized effective stress. In 
section 4, the effective stress of both interphase and ductile 
matrix will be determined by a field-fluctuation method. Once 
the secant moduli of both ductile phases are known, the overall 
secant moduli of the nonlinear composite at the applied level 
of stress can be evaluated. Then, by increasing the level of the 

applied stress, the entire stress-strain curve of the composite 
with a ductile interphase can be obtained. 

Thus it is useful to recall the effective bulk and shear moduli 
of the three-phase comparison composite first. Such information 
is also needed for the application of the field-fluctuation method. 
For the isotropic system, the effective moduli tensor L~ and 
compliances tensor Ms can be written as 

L~ = (3K,, 2#.,0, M~ = (1/3K, 1/2#.~), (6) 

where the subscript s signifies the "secant" state of the constit- 
uent phases. Once Ks and #s are known, the effective Young 
modulus E~ will follow from the isotropic relation E, = 9K,#,/ 
(3K~ + #.,.). 

Based on Hashin's (1962) composite sphere model, the over- 
all bulk modulus has been derived by Qiu and Weng (1991), 
a s  

K.,. = K3 + (3K3 + 4#~)[C1(3K2 + 4/.4)(K, -- K3) 

+ C2(3K, + 4#~)(K2 -- K3)]/ {(3Ki + 4#~)[(3K2 + 4#~) 

+ 3(c, + c2)(K3 - K2)] + 3ct(~c2 - Kt) 

× [4(#~ - #~) / (c t  + ca) + (3K3 + 4,U~)] }. (7) 

The overall shear modulus can be derived also by means 
of Christensen and Lo's generalized self-consistent scheme 
by embedding the three-phase concentrated sphere in the in- 
finite effective medium. After standard but elaborate analysis 
the shear modulus #, of the composite can be determined by 
setting the determinant of the 12 × 12 matrix in Appendix 
A equal to zero (where for brevity the subscript s reflecting 
the secant state has been omitted). As for the ordinary two- 
phase composite, the effective shear modulus of the three- 
phase system can also be cast in a second-order algebraic 
form in terms of/.,~. 

4 Determination of the Homogenized Effective Stress 
of the Ductile Phases 

The effective stress defined in Qiu and Weng (1992) is based 
on the equivalence of the distortional energy between a homoge- 
nized phase and the heterogeneously deformed phase in the 
composite, as 

._!__ o.~(,, = 1 fv  ._!_ ~b(,~(x)~;O,(x)dV, 

or ~ ( " ) =  (o-~(")(x)), (8) 

where Vr represents the volume of the rth phase and the angle 
brackets (.) signify the volume average over the said phase. To 
evaluate this quantity for both the ductile interphase and the 
matrix the field-fluctuation method originally developed by Bo- 
beth and Diener (1986) in elasticity and recently extended to 
plasticity by Suquet (1995, 1996) and Hu (1996) will be in- 
voked here. As in Qiu and Weng, this method also starts out 
from the total elastic energy equivalence between the homoge- 
nized global system and the local constituent phases, but it takes 
the advantage of the field-fluctuation due to the variation of 
shear modulus in the ductile phase. In symbolic notations, the 
elastic energy Us of the composite with a unit volume of an 
appropriate scale can be written as 

2U, = &MM" = E ( m M ~ o s . ) ,  (9) 

where the boldfaced gr is the stress tensor of the composite, 
M~. is the compliances tensor of the rth phase, and the summa- 
tion £ extends to all three phases. Then a variation in the shear 
modulus of the rth phase f rom/d to #~ + 6/z~ will result in a 
variation for the overall compliance tensor from M, to M~ + 
aM, and a stress field from O'r(X) to O'r(X) + 6re (X) .  Under 
the same boundary traction, Hill's relation (1963) implies that 
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the contribution from the variation of the stress field 6tTr(X) o n  

the overall energy vanishes due to the vanishing outer traction. 
As a consequence the following relation can be established: 

cX~r; (rr')6 = e 6 M ,  o ,  (10) 

and this leads to the homogenized effective stress for the rth 
phase 

0"~(r) = 6r(-3/z~ 2 6M~)o. 
Cr ~#~ /I " (11) 

This general relation provides the effective stress under the 
following three specific loadings: 

(i)  pure dilatation 

s2 --2 
0"e2(r ) = # r  O'kk 6t~__..~ . (12) 

3 CrK 2 6#~ ' 

~ [MP a] 

0.000 0.010 0.020 ~k 
(a) Ideally plastic 

~[MPa] 
2000, 

5 0 0 ~  

0 , . . .  = , . . . . , . . 
0.000 0,010 0,020 ~ 

(b) Work hardening 

Fig, 1 Examination of the homogenization theory in light of an exact 
solution with a soft interphase: (a) ideally plastic matrix and interphase 
and (b) linearly work-hardening matrix and interphase 

(ii) pure shear 

s2 --2 
0.e2(r ) = D # r  O'12 6#s____.~ , 

Cr#~ ~U~' 

(iii) pure tension 

s2 --2 
0.e2(r ) - -  3#r a l l  6E~ 

c~E 2 6#~' 

(13) in a spherical coordinate system, and these result in the strain 
components 

~ , ! )  = 5(0~) = c4~4~(1) = A l ,  

14) 
e~) = B]i) _ B~i) a~ ,  

r ~ 

which will be used later in the calculations. 
The computational procedure goes as follows. At a given 

applied gr, the aim is to find the overall secant compliances 
tensor M~ in (6),  or K~ and #~, which are given in (7) and 
Appendix A, respectively, in terms of #~ and #~ of the interphase 
and the matrix. One may start out with some trial values for 
both and calculate the 0.(e ~) by (11), and then substitute the 
calculated values into the constitutive Eqs. (4) and (5)  to find 
the corresponding #~. If these values are ident ica l - -or  very 
c lose - - to  the originally assumed ones, the solution is found. 
If not, a new set of #~ and #~ reflecting the calculated values 
should be assumed until the solution is found. Once M, is 
known, the overall strain follows from ~ = MsO'. By increasing 
the magnitude of o" the entire stress-strain curve at a given 
concentration of interphase can be determined. 

5 An Exact Local Analysis 

It is desirable to assess the accuracy of the theory first before 
we proceed to use it to examine the influence of the interphase 
on the overall behavior of the composite. To this end we now 
carry out an exact analysis under a hydrostatic loading. Care 
must be exercised, however, that there are more than one possi- 
bility for the yielding process. Depending on the relative yield 
strength and elastic moduli of the two ductile phases, yielding 
may commence from the inclusion/interphase interface, or from 
the matrix side of the interphase/matrix interface. Furthermore, 
two partial yielding may simultaneously take place, or one may 
first reach the fully plastic state while the other yields progres- 
sively. The constants which appear in the following field equa- 
tions are detailed in Appendix B. 

First in the elastic state, the radial displacements in the inclu- 
sion, interphase, and matrix are given by 

a~ 
u~ l) = A i r ,  u! i~ = B~i)r + B~ i ~ ,  i =  2 ,3  (15) 

= e4'~ + 7 '  i =  2 ,3  (16) 

and stress fields 

O.(1) = 0 . ~ )  = 0 . ~  = 3K(I)A1, rr 

• a~ 
0.}/] = 3Ki B~ '~ - 4#i B(2 n 7 '  

O.(o9 (i)  = 3 K i B ~ O  ' a3 = a ~  + 2#~B(2° 7 ,  i = 2 , 3 .  (17) 

The constants A1, B] i), and B(2 i) can be determined from the 
continuity conditions and the boundary condition; they are given 
in Appendix B. 

Now to reduce the number of many yielding possibilities to 
a more tractable state, both the interphase and the ductile matrix 
will be taken to be elastically incompressible as well (Qiu and 
Weng (1992) have carried out an exact analysis for both com- 
pressible and incompressible matrix in a two-phase composite, 
and the results show that there is no difference in the evaluation 
process for the energy approach). The effective stress under a 
hydrostatic tension is then given by 

,,~,) 0.# (i) = - ~rrr. (18) 

After plastic deformation commences in one phase, there are 
two possibilities: The plastic zone will spread while the other 
phase remains elastic, or partial plastic deformation will occur 
in both phases. Eventually both phases will enter into fully 
plastic state. A full analysis for a two-phase composite with a 
linearly work-hardening matrix (n = 1 ) has been given in Qiu 
and Weng (1992). Extending that procedure to the three-phase 
solid with incompressible, linearly work-hardening interphase 
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Fig, 2 Examination of the homogenization theory in light of an exact 
solution with a hard interphase: (a) ideally plastic matrix and interphase 
and (b) linearly work-hardening matrix and interphase 

0.010 0.020 ~ 
(b) Work hardening 

and matrix, one arrives at the following displacement, radial 
plastic strain, and stress fields in the plastic zone 

ul.n _ hi + Ei Di 

2El  r 2' 

cr~ i) c~,! o = D_L + - -  
r 3 h i + Ei ' 

- U>E 2 1 . 2oy i log r + Dihi + Ci .  ( 1 9 )  
ff :' = h, + e, 5 7 

When the ith phase is in a partial-yielding state, constant Ds 
can be further expressed in terms of the elastic-plastic boundary 
r~ i) 

(7- U) 
Di Y r ( i ) 3  (20) - p  • 

hi "t- E i 

In addition, the circumferential stress in the plastic state satisfies 

~o~ - a~i)  = ~7~, i ) -  h id ,  i,! n ,  (21 )  

noting that Cr} i> is a negative value. Constants Ci,  A1,  B~ i), and 

B~ n can also be determined from the continuity conditions at 
the interfaces and the boundary traction. After some lengthy 
analysis, the end results are also recapitulated in Appendix B. 
Once these constants are determined, the overall dilatational 
strain follows as 

gkk = 3 q A i ,  (22) 

due to the incompressibility assumption of both ductile phases. 
Comparisons between the exact analysis and the theory for 

the overall dilatational behavior of the three-phase system are 
shown in Figs. 1 and 2. The results in Fig. 1 are for the condition 
that the interphase is more ductile than the matrix, with a prop- 
erty only ~th of that of the latter 

E2 = E3/10, O~ 2) = cr~,3)/10, E~ = E~/ IO ,  (23) 

where Ef is the tangent modulus in the bilinear stress-strain 
curve of the ith phase, with Ef = (E~ ~ + h ~ )  -~ . On the other 
hand in Fig. 2 the interphase is taken to be stiffer than the 
matrix with 

E2 = 1.1E3, ~r~ 2~= 2 . 5 ~  3) , E~ = 2.5E~. (24) 

These values have been chosen to represent the two distinct 
yielding processes discussed in Appendix B: interphase yielding 
first and matrix yielding first, respectively. It must be noted that 
a harder interphase will not guarantee that the matrix will yield 
first, as the elastic moduli, yield stress and tangent moduli can 
all influence the onset of yielding and subsequent plastic defor- 
mation. For instance in (24) if the coefficients were replaced 
by 2 in all three terms, yielding would still commence from the 
interphase even though its yield stress is twice as high as that 
of the matrix, as in this case its higher Young's modulus will 
result in a higher elastic stress and cause it to yield first. 

Parts (a) and (b) in both figures correspond to an ideally 
plastic matrix (and interphase) and a linearly work-hardening 
matrix (and interphase), respectively. These figures reveal how 
the nonlinearity of the three-phase system develops as the stiff- 
ness of the inclusions decreases from being harder (EL~E3 = 
2) than the matrix to being softer, and eventually becoming a 
porous material with a ductile interracial zone (El~E3 = 0 ) .  
When the inclusions are stiffer than the matrix, the dilatational 
response of the system is practically linear, but as the inclusions 
become softer than the matrix, a hydrostatic tension will induce 
a nonlinear volume change. When the inclusions turn into voids, 

m 

9oo ~ ' ! [ M P a  ] • 

600 

c,=0.3 
E~JEa=0.1 

(2) (3) ~y/oy =0.1 

El/El=0.1 

c2=0.0 

300 . . . . . . . . . .  ~" 

' .0 0.1 
," 0.2 

0.000 0.005 0.010 0.015 
E l l  (a) Soft interphase 

900 ~,[MPa] 

t i E~E3=zo 
t / 
t i E~/E~=2,0 ooo /! 

300 / o,o 

0.000 0.005 0.010 0.015 

(b) Hard interphase 

Fig. 3 Influence of the ductile interphase on the tensile behavior of a particle-reinforced 
composite: (a) soft interphase and (b) hard interphase 
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Fig. 4 Influence of the ductile interphase on the shear behavior of a part icle-reinforced 
composite: (a) soft interphase and (b) hard interphase 

the material as a whole displays a strong pressure sensitivity 
even both outer phases are individually rigid. 

Now let us take a closer look at the predictions by the homog- 
enization theory in light of the exact local analysis. For the case 
with a more ductile interphase, the results in both Fig. l ( a )  
and Fig. 1 (b) indicate that the two curves are practically indis- 
tinguishable, except for the initial onset of yielding at which 
the local analysis can capture the local yielding more precisely. 
The difference becomes more discernible in Figs. 2 ( a )  and (b) 
when the interphase is stiffer than the matrix, but once again, 
the theory can provide plausible predictions for the overall re- 
sponse of the system. 

6 The Influence of the Ductile Layer on the Stress- 
Strain Relations of the Composite 

Now that the theory is shown to provide some reliable results 
under dilatational loading, it will be used to examine how the 
volume concentration of the ductile interphase affects the over- 
all response of the composite. 

Specifically we shall take silicon-carbide/6061-T6 aluminum 
matrix as the base material, and consider the following composi- 
tions 

ct = 0 . 3 ,  c2 + c3 = 0 . 7 ,  (25) 

and let c2 varies from 0 to 0.3, so that the three-phase composite 
will start out as a regular two-phase SiC/AI composite and then 
becomes a three-phase solid with an interphase. The properties 
of the constituents are (Arsenault, 1984; Nieh and Chellman, 
1984) 

El = 490 GPA, L/i  = 0.17, 

E3 = 68.3 GPA, u3 = 0.33, ~3~ = 250 MPa, 

h3 = 173 MPa, n3 = 0.455. (26) 

We shall first consider the condition when the interphase is 
more ductile than the matrix, and then when it is stiffer. 

As in the dilatational case, the properties of the soft interphase 
are taken to be ~0th of the matrix for the soft case, but retaining 
the same Poisson's ratio and n. The tensile behavior of the 
three-phase solid are shown in Fig. 3 (a)  as the volume concen- 
tration of the soft interphase increases from c2 = 0. The stress- 
strain curves of SiC particles and AI matrix are also plotted as 
dotted lines for comparison. The elastoplastic behavior of the 
composite is seen to be strongly dependent upon the interphase 

concentration, and can be weakened considerably with an in- 
creasing interphase. Indeed even with the presence of a thin 
layer (c2 = 0.05), the three-phase system is already softer than 
the matrix. 

When the interphase is twice as stiff as the matrix, the tensile 
behavior are shown in Fig. 3 (b) .  The overall response is seen 
to be strengthened with an increasing amount of the interphase, 
as expected. The departure from the behavior of the two-phase 
SiC/A1 composite at low concentration, however, is not as sig- 
nificant as in the soft case. 

The corresponding shear behavior with a more ductile and a 
stiffer interphase are depicted in Figs. 4 ( a )  and (b) ,  respec- 
tively. With a soft interphase, the low-concentration effect again 
shows a remarkable reduction in the overall yield strength due 
to the poor stress transfer from the matrix to the particle. While 
the corresponding flow stress under pure shear is lower than 
that under pure tension, the composite as a whole displays an 
equally strong dependence upon the volume concentration of 
the interphase. 
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A P P E N D I X  B 

Exact Local Elastic-Plastic Analysis 

There are many yielding processes for the composite, but the 
most common one starts from the interphase until it becomes 
fully plastic, then followed by the matrix yielding. Another 
distinct yielding process starts from the matrix until it becomes 
fully plastic, then followed by the interphase yielding. The fol- 
lowing exact solutions are for these two processes and can be 
used to construct Figs. 1 and 2, respectively. 

1 Yielding From the Interphase. When both the in- 
terphase and the matrix are in the elastic state, the coefficients 
A~, B~ "), and B~ '') are 

A I -~ 
~kk 

4(c2Ez  + c lcaE3) / (c l  + c2) + 3El/(1 - 2/.,'1) 

B~ ' ) = 0 ,  B~ 2 ) = 0 ,  

n ~  1) Ct~kk 

4 ( c 2 E 2  + CLC3E3)/(¢1 -1- c2 )  + 3E1/(1 - 2v,) ' 

B~2) = cte,k (B 1) 
4(czE2 + clc3E3)/(c|  + c2)  "b 3E1/(1 - 2v,) 

When the interphase is partly plastic and partly elastic but the 
matrix remains elastic, we let X = [A~, C2, B~ 2/, B~ 2), B~ a), 
B(23)]. Then these constants can be determined in terms of the 
elastic-plastic boundary r~ 2) from the matrix equation SX  = B ,  
with 

Therefore, corresponding to each increment of r}, 2), one can 
find out the components of X and ~k,. 

When the interphase is fully plastic but the matrix is partly 
plastic and partly elastic, we let X = [A1, Cz, D2, Ca, B~ 3), 
B(23)]. The coefficients in the SX  = B equation are 

1 h2 + E2 0 0 0 
1 0 2 E2(c,) 

~----~--- - 1  _ _2 ~ o o o 
1 - 2v l  3 cl 

1 h2 +Ez 
0 0 - 2 E2(ct + c2) 0 0 0 

S =  
0 1 2 h2 -1 0 0 

3 c~ + c2 

0 0 0 0 - 1 r~i~3~ 

E3 2 E~ I 
0 0 0 1 1 - 2//3 !. + /'3 r~ (3) 

(B5) 

and 

B = (0 ,  2 0"~2)E2 log cl 10y~(3) tp"3(3) 
3 h2 + E2 ' 2 E3(Cl -/- c2) ' 

( h34(3') 
23 h3 ~r~3)+ E3 Ea log (c ,  + c~) c~ V c~ /  

S = 

1 0 0 0 0 0 

El 
-1  0 0 0 0 

1 - 2Vl 

1 
0 0 -1  0 0 . 3(2) 

p 

0 1 E2 2E2 0 0 
x 3(2) 1 - 2v2 (1 + v2)rp  

1 1 
0 0 1 - 1  

C I -~- C 2 Cl + C 2 

E2 2 E2 E3 2 E3 
0 0 

1 - 2 u 2  (1 + v2) (c l  + c2) 1 - 2v3 (1 + v3)(cl + c2) 

(B2) 

and 

{ 1-(z)-3(2) 2 ° ' ~ 2 ) [ E 2 1 o g c j  - -  ] ,  O = Uy r p  h2r 3(2) 

E2Cl ' 3 hE + E2 cl _1 

T 
1 cr~ 2) 2 o'~ 2) [E2 log rp (2) - hz], 0, 0 . (B3) 
2 E2 ' 3 h2 + E2 

The boundary r~ 2) is in turn related to the applied stress ekk 
through 

_3_E~u 3 B~3) 6E3 B(23). (B4) 
~kk = 1 1 + V3 

2 ,~2)E2 log (c~ + c2) 1 ~r~y 3) 
3 hE q- E2 ' 2 E3 

2°~3) ( E 3 1 o g r ~ 3 ) - - ~ )  t . (B6) 
ha + E3 

One can obtain Xin terms of r~ 3), which is again related to the 
applied ~kk through (B4). Then by increasing re O), one can 
proceed in the same fashion. 

When both the interphase and the matrix are in the fully 
plastic state, we let X = [A~, C2, D2, C3, D 3 ] .  From SX = B ,  
with 
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1 0 h2 + E2 0 
2E2Cl 

E----L-- 1 2h2 0 
1 - 2vi 3cl 

h2 + E2 0 
S = 0 0 2E2(Cl  + c2) 

2h2 - 1 
0 1 3 (Ct  + c2) 

0 0 0 1 

and 

.:{o,o,o, 2 ly~2)E2 log c~ 

3 h2 + E2 

0 

0 

h3 q- E3 

2E3(Cl  + C2) 

2h3 
3(cl + c2) 

2h3 
3 

(B7) 

]}T 
2 [ ~ 3 ) E 3  cr~2)E2 (B8) 

L h3 + E3 h2 + E2 ' 

the final stage of the stress-strain curve can be calculated. 

2 Y i e l d i n g  F r o m  t h e  M a t r i x .  For  the construction of the 
exact solution with a hard intelrphase in Figs. 2(a) and (b), 
Eqs. (B1), (BT), and (B8) remain valid. However, Eqs. (B2) 
to (B6) must be modified. 

When the matrix is partly plastic and partly elastic while the 
interphase remains elastic, we let X = [A~, B~ 2), B~ 2), C3, 
B~ 3), B~3)]. 

Then 

1 

E~ 
1 - 2v~ 

0 

S=,  

0 

0 

1 
-1 - - -  

¢1 

F~ 2Ea 
I - 2 v 2  ( I  + u2)c~ 

1 
1 

£'1 q- C2 

E_, 2E2 
1 - 2v2 ( 1 + v2)(c~ + c2) 

0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

-1 0 0 

1 
0 - I  r~ (3) 

E3 2E3 
1 

1 -2u3  (1 +u3)r~ 13~ 

(B9) 

and 

1 0.7). 3(3) t'p 

B = 0, 0, 2 E3(cl + c2) ' 

2 or(3) [ h3r~,(3) 1 
3 h3 + E3 E3 log (cl + c2) c ~ - - +  c2 ' 

,]}T 
10~, 3) 2 Uy E3 log r~;  3) - -  h3 (B10) 
2 E3 ' h3 + E3 3 " 

When the matrix is fully plastic but the interphase is partly 
plastic and partly elastic, we let X = [A1, C2, B9 ), B~ l), C3, 
D 3 ] .  T h e n  

S = ,  

1 0 0 0 0 

E~ 
1 0 0 0 

1 - 2u~ 

1 
0 0 -1 0 

& 2& 
0 1 0 

1 -- 2u~ (1 + u2)r~ ~2~ 

1 
0 0 1 0 

('1 + C2 

£½ 2& 
0 0 1 

1 - 2u~ (1 + u2)(c~ ÷ c2) 

0 

0 

0 

0 

1 h3 + E3 

E3(c I @ C2) 

2 h3 
3 C~ + C2 

( B l l )  

and 

B = O r  / p  " E2 log CE - -  , 
Ezci ' 3 h 2  + E2 cl _1 

1 ~ ( 2 )  
, 2 

2 E2 
h2°-'~'2) IE21°grF  - ] +  E2 (2) 31 h2 , 

0, 20"~,3)E3 log (ct + c2)" V 
" h3 + E3 J . (B12) 
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Effects of Thermomechanical 
Coupling and Relaxation Times 
on Wave Spectrum in Dynamic 
Theory of Generalized 
Thermoelasticity 
A spectral study is performed to gain insight into the effects of  relaxation times 
and thermomechanical coupling on dynamic thermoeIastic responses in generalized 
thermoelasticity. The hyperbolic thermoelastic theories of  Lord and Schulman ( LS ) 
and Green and Lindsay ( GL ) are selected for  the study. A generalized characteristic 
equation is derived to investigate dispersion behavior of  thermoelastic waves as 
functions of  thermomechanical coupling and relaxation time constants. Thermome- 
chanical coupling is found to impose a significant influence on phase velocities. The 
GL model implicitly indicates that the order of  magnitude of  the thermomechanical 
relaxation time can never be greater than that of  thermal relaxation time. 

Introduction 

Because it incorporates a parabolic-type heat transport 
equation, the classical theory of thermoelasticity views heat 
propagation as a diffusion phenomenon and thus allows in- 
stantaneous responses to be observed everywhere in the prob- 
lem domain upon the immediate action of thermal excitation. 
This means that a thermal disturbance travels with infinite 
speed and that the effects of a disturbance will be experienced 
instantaneously at locations infinitely far. To remedy this 
physically unrealistic contradiction, new theories based on a 
modified Fourier law of heat conduction or the incorporation 
of either an entropy production inequality or temperature- 
rate-dependent constitutive variables were proposed (Chan- 
drasekharaiah, 1986; Ignaczak, 1980; Jakubowska, 1984). By 
introducing thermal relaxation time constants into the heat 
equation, these new generalized theories impart a finite nature 
to disturbance propagation. Of all the nonclassical theories, 
the Lord and Schulman (LS) (Lord and Schulman, 1967) 
and the Green and Lindsay (GL) (Green and Lindsay, 1972) 
models are in popular use in engineering applications (Spicer, 
1991, and Hetnarski and Ignaczak, 1993). The LS model 
introduces a single time constant to dictate the relaxation of 
thermal propagation, as well as the rate of change of strain 
rate and the rate of change of heat generation. In the GL 
model, on the other hand, the thermal and thermomechanical 
relaxations are governed by two different time constants. Thus 
the underlying physical interpretations as well as the assump- 
tions of dynamic thermoelastic processes by LS and GL are 
distinctively different. Many studies explored this difference 
to quantify the implications of their differences in particular 

field problems (Sanderson, 1995). Unfortunately, the com- 
plexity of solving coupled temperature and displacement 
fields, together with the argument that thermomechanical cou- 
pling shows negligible impact on the solutions (Nowinski, 
1978; Spicer, 1991 ), have led to the frequent use of the decou- 
pled formulations (with coupling terms omitted) in numerical 
models of thermoelastic responses. Further, although the oc- 
currence of finite thermal wave speed for small intervals of 
time has long been experimentally observed (Chandrasekhar- 
aiah, 1986), the determination of relaxation times are largely 
based on the assumption that thermal waves can never travel 
faster than mechanical waves. These anomalies raise three 
questions: 

1 In what manner and to what extent do LS and GL describe 
thermoelastic processes differently? 

2 What are the implications and justifications for not con- 
sidering coupling terms? 

3 Do relaxation times have any impact at all on the solution 
fields? 

This paper attempts to answer these questions by using 
spectral analysis, because the solutions to waves are governed 
by spectral relations. First, a general characteristic equation 
applicable to both the LS and GL models and the classical 
theory is derived. Second, the roles of thermomechanical cou- 
plings and relaxation times in generalized thermoelasticity are 
examined through the consideration of phase velocity. Finally, 
their combined effects on spectral behavior are investigated 
and a rationale is presented that is pertinent to applications 
that are characterized by large thermal gradients and short 
transient scales. 
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Thermoelastic Theories 
The basic equations of generalized thermoelastic theory are 

derived from the equations of motion and the energy balance 
equation 

O'q,j + pbi  = pUi 

pT~ = --qk.k + Q (1) 

plus the constitutive equations (Chert and Weng, 1988; Tao and 
Provost, 1984) 
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Relaxation Time t o (see) Phase Velocity c I (m/see) 

1.8.10.14 67,830 

1.8'10.13 21.450 

1.8.10 q2 

1.8.10 .l] 

1.8.10 qo 

1.8.10.9 

6,800 

5,93~ 

Phase Velocity c 2 (m/sec) 

~93~ 

Table I Phase velocities for LS model for different relaxation times, to, for an aluminum 
material 

£935 

2,143 

678 

214 

Table 2 Phase velocities for GL model for different relaxation time ratio, t l / t2, for an 
aluminum material 

Relaxation Time t 2 

(sec) 
1.8'10 .I4 

1.8'10 q4 

1.8.10 -14 

1.8.10 -13 

1.8"10 -13 

1.8.10 -]3 

1.8.10 q2 

1.8.10 -12 

1.8-10 q2 

tl~ 2 Phase Velocity c I 

(m/see) (m/sec) 

10 67,830 5,935 

5 67,830 5,935 

2 67,830 5,935 

10 21,450 5,931 

5 21,450 5,933 

2 I 21,450 5,934 

1o I i 6,936 5,803 

5 6,864 5864 

Phase Velocity c 2 

5,905 6,817 

i 
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Fig. 1 Dispersion curves for the coupled case according to the LS model for different relaxation 
times (to equals 0.018, 0.18, and 1.8 plcoaeconds) 
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Real Part of Mode 1 (coupled) 
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Fig. 2 Dispersion curves for the coupled case according to the LS model for different relaxation 
times (to equals 18, 180, and 1800 picosaconds) 

ao.j = Cijk:kt.j -- 13U(0 + ttO) 

qi + tomb = -kuOa 

~q = ~qo + cuO + Cdzb + 1/3~:c~j (2) 
P 

where ~r U are the components of the stress tensor; Cu~t the elastic 
moduli tensor;/3 U the thermal moduli tensor; e U the strain ten- 
sor; kij the thermal conductivity tensor; Ug the displacement 
field components; p the density; b~ the body force vector; T the 
absolute temperature; 0 the temperature increase, with 0 = T 
- To and To the reference temperature; r/ the entropy density, 
with ~qo the entropy density at reference state; qk the heat flux 
vector; c~ the specific heat; and Q the heat source. By substitut- 
ing Eqs. (2) into Eqs. (1), the resulting generalized coupled 
field equations governing dynamic thermoelastic processes can 
be written as 

pl3i + ( t~13~jb),j + (/3uO - C~kiUk,,),: = pb, 

pc,(t2 + to)O + pc,b + /3uTo(l)i J + toOij) - (kuO.j).~ 

= (Q + toO). (3) 

The LS theory is obtained when t, = t2 = 0, with to the thermal 
relaxation time. In GL theory, to = 0 and h and t2 are the 
thermal-mechanical relaxation time and the thermal relaxation 
time, respectively. When to, h, and tz all vanish, field Eqs. (3) 
reduce to the classical coupled formulations. 

For homogenous isotropic materials and in the absence of 
body force and heat source, the equations of displacement mo- 
tion and energy balance, Eqs. (3), can be expressed in terms 
of del operator (V) and the Laplace operator (272) as 

#V2U + (h + #)VV" U -  /3(1 + t l O ) v o = p f J  

pc~(h + to)i~ + pc~O + /3To(V(J + toVU) = kV20 (4) 

in which 

= (3k + 2~)a (5) 

is the thermoelastic coupling constant, with k and # the Lame's 
constants and a the coefficient of thermal expansion. 

From Eqs. (3), the physical meaning of the time constant, 
to, may be interpreted as ( 1 ) a material property which dictates 
the finite nature of thermal waves, because the speed of thermal 
propagation can be explicitly determined to be cr = [k! 
(pCuto)]~/2, and (2) the relaxation time required before the 
effect of rate of strain rate is experienced in the thermal field, 
as is evident in the fourth term on the left-hand side of Eqs. 
(3). Since to does not appear in the equation of motion, it has no 
other physical implications on the mechanical field. However, 
although it is physically acceptable that to may be an inherent 
property of the material, the concept of rate of strain rate is 
practically difficult to comprehend from the fundamental phys- 
ics. Since the term of rate of strain rate cannot stand indepen- 

Journal of Applied Mechanics  SEPTEMBER 1998, Vol. 85 / 607 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Real Part of Mode 1 (deeoupled) 
(t0=0.018, 0.18, and 1.8 pieo-sec) 

900 

800 

• 700 

600 

500 

400 

300 

200 

I00 

0 

- y 

0 l 2 3 4 

Freq .  (MHz)  

Imaginary Part of Mode 1 (deeoupled) 
(10=0.018, 0.18, and 1.8 pico-see) 

4E-009 

3E-009 

• 2E-009 

IE-009 

~-IE-009 

• -2E-009 

-3F..-009 

-4E-009 
0 1 2 3 4 5 

Freq. (MHz) 

Real Part of Mode 2 (deeoupled) 
(10=0.018, 0.18, and 1.8 pieo-see) 

180000 

160000 

• 140000 

~,120000 

.~100000 

80000 

60000 

40000 

20000 

I I I I 
1 2 3 4 

F req .  (MHz)  

Imaginary Part of Mode 2 (deeoupled) 
(10=0.018, 0.18, and 1.8 pico-see) 

180000 

160000 

• 140000 

,.~,120000 

~100000 

80000 

60000 

40000 

20000 

. / /  

/ 

/ 
I I I I 
1 2 3 4 

Freq .  ( M H z )  

Fig. 3 Dispersion curves for the decoupled case according to the LS model for different relaxation 
times (to equals 0.018, 0.18, and 1.8 picoseconds) 

dently from to, or else the physical meaning they altogether 
represent--strain rate--cannot stand, a simultaneous co-exis- 
tence of the two is implied. In other words, the variation of rate 
of strain rate can be quantified if and only if to can be quantified. 

Again, from Eqs. (3), with to = 0, it is seen that the GL 
theory (1) admits finite energy transport speed and this speed 
is a function of the new material property t2, (2) includes in 
the thermomechanical coupling term the rate of change of tem- 
perature gradient through a time constant t~, and (3) exhibits 
strong interdependency (coupling) between the thermal and me- 
chanical fields. As the effects of strain rate on the thermal 
field and temperature gradient on the mechanical field occur 
simultaneously, as described by the GL theory, the effects of 
rate of change of temperature gradient is not immediate. The 
time constant t~ may be interpreted as the relaxation time re- 
quired before the effect from thermal propagation is to be ob- 
served physically as displacements. However, it is difficult to 
quantify tl, because the rate of change of thermal gradient has 
to be established first. 

Spectral  Analys is  
A plane harmonic wave propagating with phase velocity c in 

a direction defined by the propagation vector p is represented 
by 

U ( x ,  t )  = A d e  liv(X'p ct)l (6) 

where x is the position vector, d is the unit vector defining the 
direction of particle motion, and y = 27r/X is the wave number, 

where X is the wavelength. A scalar temperature wave that 
accompanies a displacement wave may be assumed of the form 
(Achenbach, 1973) 

0 ( X ,  t )  = Be tiT(x'°-ct)l. ( 7 )  

Substituting U and 0 into Eq. (4) and eliminating B, gives 

(# - pc2)d + (h + # ) ( p ' d ) p  + (/3zT°----f-] 
\ pc~ / 

1 - i(to + t l)yc + tot ly2c2](p.d)  p = 0 (8) 
X - 

c + i[K~y ----~o + t2)yc2l J 

where Kv is the thermal diffusivity. Since the direction of parti- 
cle motion (d) must either be parallel or perpendicular to the 
direction of wave propagation (p), the cases of shear waves 
and longitudinal waves are investigated as follows. 

For the case when d ~: +p,  p , d  = 0 is implied and Eq. (8) 
becomes 

c = ~ / ~ ,  (9) 

Eq. (9) defines shear (transverse) waves. Two immediate obser- 
vations are that shear waves are not functions of relaxation time 
constants nor thermal-mechanical coupling, and they do not 
interact with the temperature field. 

When d = _+p, so that p . d  = _+1, Eq. (8) becomes 
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Fig. 4 Dispersion curves for the decoupled case according to the LS model for different relaxation 
times (to equals 18, 180, and 1800 picoseconds) 

(k + 2# - pc 2) + / | 
\ pc~ / 

[ ! ~ i ( t o+  t t ) yc  + totly2c 2] 
× L c + i[Koy : ~ o +  t2)yc 2] J : O. (10) 

This complex-valued characteristic equation shows that the 
phase velocity c depends on the wave number, y, and the relax- 
ation times (be it to for the LS theory or tl and t2 for the 
GL 's ) ,  which indicates that thermoelastic waves are dispersive, 
attenuative, and closely related to the finite nature of the thermal 
waves. However, when the interactions between the thermal 
and mechanical fields are decoupled by setting/3 = 0, Eq. (10) 
reduces to the definition of longitudinal waves 

~ +  2# 
c = CL = - - ,  (11) 

P 

which implies that thermoelastic waves are nondispersive, non- 
attenuative, and independent of relaxation times. Since the clas- 
sical uncoupled theory gives the identical results as Eq. (11 ), 
it can be concluded that the differences between the generalized 
and classical theories diminish in describing the phase velocities 
of uncoupled thermoelastic waves. Thus, the thermomechanical 
coupling effect is not always negligible. More physical insights 
into the thermoelastic processes can be revealed by considering 
the limitcases of 3'. This is to be shown by first solving Eq. 

(10) for c. After rearranging and collecting terms and making 
3' -* o% we obtain two distinctive roots of c ' s  

m _+ ~/m 2 - 4K~c~(to + t2)11/2 
. , 2  = +- 2 o+ 

where 

m = (to + t2)c], + K,, + flTo2 (to + G). (12) 
D-Cv 

Table 1 gives the numerical values of Cl and c 2 for different 
relaxation time to for an aluminum material. The various proper- 
ties of this material are given as follows: 

Young's  modulus: 
Poisson ratio: 
density: 
specific heat: 
thermal conductivity: 
expansion coefficient: 

With tl and t2 all being 

70 GPa 
0.3 
2675 kg/m 3 
921 J/kg°C 
204 W/m°C 
23 #c/°C 

set to zero, this case corresponds to 
the LS theory. When the wavelength is small (3' ~ ~ ) ,  the 
characteristic equation of LS always resolves two waves, with 
one approaching the longitudinal mechanical wave velocity (c~, 
= 5935 m/sec) and the other the thermal wave velocity (cr = 
[k/pcdo] w2). The resolution of mechanical waves is seen to be 
independent of the thermal relaxation, to (and therefore the finite 
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Fig. 5 Dispersion curves for the coupled case according to the GL model for different relaxation 
times and relaxation time ratios (t2 equals 0.018, 0.18, and 1,8 picoseconds) 

nature of thermal wave speed). This observation is not evident 
from the classical thermoelastic theory. However, when y ~ 0, 
the characteristic equation, Eq. (10),  resolves only mechanical 
waves, no thermal waves, as is also the case with the classical 
theory (Doyle, 1988). Therefore, for applications that generate 
high-frequency thermoelastic waves due to large thermal gradi- 
ents, the LS theory should provide significant insight not avail- 
able from the classical theory. 

Conclusions similar to the LS model can be obtained by the 
GL theory. In Table 2, phase velocities according to the GL 
model are tabulated against various t i l t2 ratios for the same 
aluminum material as in Table 1. Since t2 is the thermal relax- 
ation parameter for the GL model as to is for the LS model, the 
cases when t2 = 1.8.10 -14 sec, 1.8" 10 -13 sec, and 1.8" 10 -12 
sec are considered in Table 2. The most interesting observation 
from Table 2 is that steady resolution of mechanical waves can 
be maintained only when t2 is less than 10 ~3 sec. When this 
is the case, the resolution is also independent of the relaxation 
ratio, f i / t2.  For t2 larger than 10 12 sec, the consistency of 
both the mechanical and thermal wave speeds deteriorate with 
increasing f i / t2 ratio. This makes applying GL theory rather 
difficult in engineering problems because thermal relaxation 
times of materials have to be somewhat accurately determined. 
However, when measured results are compared to the values in 
Table 2, GL theory implicitly indicates that the thermal relax- 
ation time for aluminum is at least of the order of 0.1 picosec- 
onds (10 -13 sec). This marks the major attribute of the GL 
model which the LS model does not exhibit. As is seen from 
Table 1, the LS model always resolves two waves, one mechani- 

cal and one thermal waves, but gives no indications as to when 
fundamental physics is violated. It is noteworthy that the GL 
characteristic equation (to = 0) is identical to the LS's  (tl = t2 
= 0) if tl = t2 = to, which means that both theories give the 
same descriptions of thermoelastic wave propagation only when 
the relaxation times for the thermal propagation and the thermal- 
mechanical interaction are of the same order of magnitude. 

To numerically investigate the effects of coupling and relax- 
ations on the spectral behavior of thermoelastic waves in the 
space-time domain, Eq. (10) is mathematically recast using c 
= ~v/y,  so that the wave number 3' is represented as a function 
of radial frequency, w, as follows: 

- i 

+ (to + t2)C~ + K~ + (to + t l )  w 3 '2 
p c ~ j  j 

+ [ i +  (to + t2)~]w 3 = 0 .  (13) 

The solutions to Eq. (13) are the spectrum relation for four 
different modes. Since Eq. (13) is a quadratic function of 3, 2, 
there is always one pair of roots which is the negative images 
of the other pair. In the following figures, only the positive 
modes are shown for the same aluminum material as before. 

Figure 1 shows the real and imaginary components of the 
two positive modes of the LS model for the cases when to equals 
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Fig. 6 Dispersion curves for the coupled case according to the GL model for different relaxation 
times and relaxation time ratios (t= equals 18, 180, and 1800 picoseconds) 

1 .8"  10 -14 sec, 1.8" 10 -13 sec, and 1.8" 10 -12 sec, as in Table 
1. The mode 1 behavior exhibits a linear relation between fre- 
quency and the real part of the wave number, and a relatively 
negligible imaginary component. Since the real part gives rise 
to propagating wave trains and the imaginary part indicates 
attenuations in space, mode 1 represents that portion of the 
thermoelastic response suffers no attenuation and whose wave- 
form remains unchanged in time. The mode 2 behavior shows 
nonlinear relations for both real and imaginary parts with sig- 
nificant magnitudes. Consequently, the ever-attenuating mode 
2 is the portion of the response that propagates with much 
slower speed (than mode t ) and a changing waveform. It can be 
thus summarized that a propagating nondispersive thermoelastic 
response (mode 1) is always accompanied by a simultaneous 
effect (mode 2) which is highly localized in space. Also, relax- 
ation times are seen to impose no perceivable effects on the 
dispersion curves in Fig. 1. 

However, further increasing the order of to does introduce 
significant changes in the behavior of modes 1 and 2. In Fig. 
2, for the cases of to = 1,8.10 -11 sec, 1.8.10 -~° sec, and 
1.8.10 -9 sec, the mode 1 behaves exactly as the mode 2 in 
Fig. 1, and the mode 2 as the mode 1 in Fig. 1. Except for 
the interchange of the modes, there is no noticeable difference 
between Figs. 1 and 2. Therefore, the same observations can 
be made with Fig. 2. Interestingly enough, although the thermo- 
mechanical coupling term 3 was shown to have a non-negligible 
influence on the phase velocity, it imposes no effects on the 
spectral relations. By setting/3 be zero (and therefore decou- 
pling the field Eqs. (4)) ,  the dispersion curves for all cases of 

to considered in Figs. 1 and 2 are plotted in Figs. 3 and 4. Again, 
except for a much smaller imaginary part for the nondispersive 
propagating component, no noticeable difference is observed. 
It can thus be concluded that, regardless of the particular initial/ 
boundary value problem, the spectral relations given by the LS 
model resolves two waves whose spectral behavior is insensitive 
to the effects of both relaxation times and coupling. 

Figure 5 depicts the data for the GL model from Table 2. 
It shows the mode behavior of the GL model for the coupled 
cases when t2 equals 1.8.10 -14 sec, 1.8.10 -13 sec, and 
1.8" 10-12 sec with the ratio of the thermomechanical to ther- 
mal relaxation times, 11/t2, equal to 2, 5, and 10. The mode 
behavior with the same tl/t2 ratios while t2 equals 1.8.10 -1~ 
sec, 1.8.10 -1° sec, and 1.8.10 -9 sec is given in Fig. 6. The 
immediate observation is that all spectral relations identically 
resemble that of corresponding graphs in Figs. 1 and 2. Also, 
they exhibit no dependency on the relaxation time ratio tl/t2. 
The imaginary parts of mode 1 in Fig. 5 and of mode 2 in 
Fig. 6 are the only two that reveal some degree of sensitivity 
to the influence of relaxation ratios. Their magnitudes show 
a tendency to increase with increasing frequency; but they are 
so small compared to the corresponding real parts that they 
play a negligible role in attenuating the propagating nondis- 
persive components. However, as the relaxation ratio becomes 
larger, the magnitude of the imaginary components also be- 
come non-negligibly large and therefore contribute to the at- 
tenuation of the wave. Since t~ has been shown to be of the 
same order, or less, than tz, an attenuating nondispersive wave 
can never physically exist. The spectral relations for the de- 
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Fig. 7 Dispersion curves for the decoupled case according to the GL model for different relaxation 
times and relaxation time ratios (ta equals 0.018, 0.18, and 1.8 picoseconds) 

coupled cases (/3 = 0) are given in Figs. 7 and 8. They show 
no discernable differences from the coupled cases in Figs. 5 
and 6. By comparing Fig. 5 to Fig. 1, Fig. 6 to Fig. 2, and so 
:forth, it is seen that the linearity/nonlinearity and the magni- 
tudes of the dispersion curves for the GL and LS models are 
the same, Thus, the GL model resolves two waves that are 
spectrally and characteristically identical to that of LS. 

Discussion and Conclus ions  

It is shown that, although the relaxation times tl, t2, and to 
were derived from distinctively different physical assump- 
tions and physical laws, the spectral behaviors described by 
LS and GL theories for thermoelastic responses are remark- 
ably identical. Relaxation times and thermomechanical cou- 
pling terms are shown to have no influence on spectral rela- 
tions. The capability of resolving two waves by both the LS 
and GL models is also demonstrated to be independent of the 
effects of relaxation time and coupling terms. However, it is 
also shown that coupling terms do have a non-negligible effect 
on the phase velocities of thermoelastic waves. It does not 
matter if generalized models or classical formulations should 
be used to analyze particular decoupled thermoelastic prob- 
lems, because all of them give the same descriptions on funda- 
mental wave characteristics such as phase velocities and spec- 
tral relations, it is also demonstrated that transverse waves 
are not functions of relaxation times nor thermomechanical 
coupling terms. Finally, the GL theory is shown to exhibit 
strong sensitivity to the choice of thermal relaxation time and 

it implicitly indicates the order of magnitude of the thermome- 
chanical relaxation time constant. 

The fact that the LS theory ( 1 ) does not indicate the order 
of magnitude of the thermal relaxation constant, so that fun- 
damental physics is not violated, (2) introduces the rate of 
change of strain rate, a term physically difficult to compre- 
hend, and (3) violates the Fourier conduction law at the 
fundamental level, raises questions concerning the feasibility 
as well as applicability of the theory in modeling thermoelas- 
tic problems. This concern was also addressed from the view- 
point of basic thermodynamics by Wegner and Haddow 
(1993). They show that the LS theory violates the entropy 
inequality when the thermal relaxation time constant is 
greater than a critical value. In other words, the LS theory 
may give results which are thermodynamically inadmissible. 
On the other hand, it has been demonstrated that the GL 
theory indicates, if the fundamental physics is to hold, the 
order of magnitude of the thermal relaxation time can be 
explicitly determined. Since it does not violate the Fourier 
conduction law, the GL theory has been shown, again, by 
Wegner and Haddow to follow the entropy inequality. In 
addition to all the major features which contribute to the 
feasibility of the GL theory, the applicability of it should 
include problems involving very short time intervals and very 
high heat influxes (Hetnarski and Ignaczak, 1994). This can 
be realized by re-examining again the physical meanings of 
tj and h. Because the extent of rate of change of the thermal 
gradient is resolved through tl and the effect of thermal load- 
ings on the problem domain is governed by h, the GL theory 

6 1 2  / Vol. 65, SEPTEMBER 1998 T r a n s a c t i o n s  o f  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Real Part of Mode 1 (decoupled) 
(t2=18, 180, and 1800 pieo-see) 

180000 

160000 

• 140000 

,~120000 

.~100000 

80000 

60000 

40000 

20000 

/ 

V i I I I I 
1 2 3 4 

Freq. (MHz) 

Imaginary Part of Mode 1 (deeoupled) 
(t2=18, 180, and 1800 pieo-see) 

180000 

160000 

• 140000 

~120000 

tooooo 
80000 

60000 

40000 

20000 

_ / / /  
/ /  

/ 
I I I I 

0 l 2 3 4 

Freq. (MHz) 

Real Part of Mode 2 (deeoupled) 
(t2=18, 180, and 1800 pico-sec) 

900 

8oo 
700 _ // 

600 / 

500 / " /  " 

400 //// 
300 / /  
200 / /  

100 

o I I i 
0 1 2 3 4 

Freq. (MHz) 

Imaginary Part of Mode 2 (decoupled) 
(t2=18, 180, and 1800 pico-sec) 

4E-009 

3E-009 

~ 2E-009 

1E-009 

~-1E-009 

• -2E-009 

-3E-009 

-4E-009 
0 1 2 3 4 5 

Freq. (MHz) 

Fig. 8 Dispersion curves for the decoupled case according to the GL model for different relaxation 
times and relaxation time ratios (t2 equals 18, 180, and 1800 picoseconds) 

should provide significant insight into engineering applica- 
tions such as laser-induced ultrasound modeling and plasma 
welding. 
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The Cosserat Spectrum Theory 
in Thermoelasticity and 
Application to the Problem 
of Heat Flow Past a Rigid 
Spherical Inclusion 
We apply the Cosserat Spectrum theory to boundary value problems in thermoelas- 
ticity and show the advantages of this method. The thermoelastic displacement field 
caused by a general heat flow around a spherical rigid inclusion is calculated and 
the results show that the discrete Cosserat eigenfunctions converge fast and thus 
provide a practical method for solving three-dimensional problems in thermoelas- 
ticity. In the case of uniform heat flow, the solution is obtained analytically in closed 
form and a variational principle within the frame of the Cosserat Spectrum theory 
shows that the solution maximizes the elastic energy. 

Introduction 
The Cosserat Spectrum theory was introduced by Cosserat 

and Cosserat (1898) and subsequently received rigorous mathe- 
matical attention by Mikhlin (1973). The subject of the Cos- 
serat Spectrum theory is not widely known in the American 
applied mechanics community~ Horgan and Knowles (1971) 
used similar equations as for the Cosserat eigenvalues in order 
to obtain the Korn constant for elastic bodies. Markenscoff and 
Paukshto (1998) have applied the Cosserat Spectrum theory 
to elasticity and thermoelasticity. They also established a new 
variational principle regarding the stationarity of the elastic en- 
ergy in thermoelastic problems over all temperature distribu- 
tions with constant thermal energy. Liu and Markenscoff (1997) 
applied the Papkovich-Neuber potential method to obtain the 
discrete Cosserat spectrum for the boundary value problems of 
displacement and traction for bodies of spherical geometry. 

In this paper, we demonstrate the applicability of the Cosserat 
Spectrum theory to solve thermoelastic problems. We calculate 
the displacement field caused by a general heat flow around a 
spherical rigid inclusion. The results show that the discrete Cos- 
serat eigenfunctions converge fast and provide a practical 
method for solving three-dimensional problems in thermoelas- 
ticity. We also solve the problem of uniform heat flow past 
a thermally insulated spherical rigid inclusion. Moreover, by 
applying the variational principle in the context of the Cosserat 
Spectrum theory (Markenscoff and Paukshto, 1998), we show 
that the elastic energy is maximized for a uniform heat flow 
past a thermally insulated spherical rigid inclusion. Of course, 
these problems might be solved by extending the methods of 
Sharma (1957) or McDowell and Sternberg (1957) (see also 
Nowacki, 1986). However, here we wish to demonstrate the 
applicability of the Cosserat Spectrum theory and its physical 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Sept. 23, 
1998; final revision, Jan. 12, 1998. Associate Technical Editor: J. R. Barber. 

meaning. While for general geometry the Cosserat eigenvalues 
and eigenvectors are not known analytically, they can be ob- 
tained numerically, and due to the fast convergence only the 
first few terms are needed. 

The Cosserat Spectrum theory could also be applied to the 
problems of a thermal inclusion (Erkman and Gurgoze, 1991; 
Dassios and Kostopoulos, 1994). The thermoelastic equations 
for a mixture are formally the same as the Navier equations in 
thermoelasticity (see Eq. (2.16) of Erkman and Gurgoze, 
1991 ). Dassios and Kostopoulos studied the scattering of elastic 
waves by a spherical thermal inclusion. The leading low-fre- 
quency approximations are reduced to a sequence of static Na- 
vier problems for the exterior of the scatterer and to a sequence 
of static thermal stress problems for the interior (see Eq. (43) 
and Eq. (44) of Dassios and Kostopoulos, 1994). These equa- 
tions can be solved readily by the Cosserat Spectrum representa- 
tion theorems in the presence of thermal loading and body 
forces. 

Application of the Cosserat Spectrum Theory to Ther- 
moelasticity 

The Cosserat Spectrum theory states that in a domain ~ the 
Navier equations of elasticity 

A u + ~ V V ' u = 0  inf~ (1) 

subjected to the displacement on the boundary OrS 

u = 0  onOf2 (2) 

or traction 

t = ~r.n = /~[2e + ( w -  1 ) d i v u l ] ' n  = 0 onOf~ (3) 

admit nontrivial solution when co takes specific values ~,, in a 
set of points called the Cosserat eigenvalues. The nonzero solu- 
tion a, is accordingly called the Cosserat eigenvector. In Eqs. 
( 1 ) - ( 3 ) ,  a~ = (X + # ) /#  is the spectrum parameter, k and 
the Lame's constants, u the displacement vector, e the strain 
tensor, cr the stress tensor, 1 the unit tensor, n the outward unit 
vector normal to 0fL and t the boundary traction. 
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The Cosserat spectrum obviously lies outside the range of 
validity of the uniqueness theorem (Knops and Payne, 1971 ) 
in elasticity. The Cosserat eigenvectors are orthogonal and com- 
plete in the Sobolev space H~ (f~) in three dimensions, namely 
for 

f ( v .  a)2dV < ~.  (4) 

Therefore, the solution of the inhomogeneous equations, ei- 
ther in the differential equations as body force or in the bound- 
ary conditions, can be represented by superposition of the Cos- 
serat eigenvectors (Mikhlin, 1973; Mikhlin et al., 1995). In the 
present paper, we consider a particular type of body force due 
to thermal effects, as follows: 

F = - / , t ( 3 w -  1 )aVT (5) 

where a is the coefficient of thermal expansion, and T the 
temperature. 

The first boundary value problem (boundary value problem 
of displacement) in thermoelasticity is described by 

Au + w V V ' u  = ( 3 w -  1)c~VT i n n  (6a) 

u = 0 o n 0 ~  (6b) 

Based on the representation theorem (Mikhlin, 1973), we 
show that the displacement field u caused by a general tempera- 
ture field T (nonharmonic in presence of heat sources) admits 
the form 

(T, V" ¢,)a,, 
&,, 

u = ( 3 c o -  1)a 
L&,, CO 

_ _  , ~ ( -  I ),~ ,~( l ) l  l (T, V ' . .  ).. ,  j (7a) 
+ l + w  

where ~,, and &, are the discrete Cosserat eigenvalues and eigen- 
vectors for the first boundary problem, respectively; a}, ~ are 
the Cosserat eigenvectors (forming an orthogonal subspace) 
corresponding to the eigenvalue & = - 1  of infinite multiplicity; 
and we have defined 

(T, V .  a) ~ f T V .  adV. (7b) 

For a harmonic temperature field T, Eq. (7a) reduces to 

u = (3w - 1)o~ ~ ~ &" (T, V" an)a,,. (8) 
n W n - -  02 

The second boundary value problem (boundary value prob- 
lem of traction) in thermoelasticity is described by 

Au + w V V ' u = ( 3 w -  1 )aVT i n ~  (9a) 

t = 0  on0~2. (9b) 

The representation theorem for the displacement caused by 
any temperature field T (both harmonic and nonharmonic) takes 
the form 

u = ( 3 w - 1 ) c ~ [  1-&'w- w,,~ (T, diva,,)an 

q 2 
7{ 1 ) ~ , 7 (  I l l  + w +  1 (T, div . . . . . . .  j (10) 

where &,, and a,, are the discrete Cosserat eigenvalues and mgen- 
vectors for the second boundary problem, respectively, and 
a},-1) are the Cosserat eigenvectors (forming an orthogonal sub- 

space) corresponding to the eigenvalue of infinite multiplicity 
& = - l .  

Markenscoff and Paukshto (1998) developed a new varia- 
tional principle in thermoelasticity within the framework of the 
Cosserat Spectrum theory. For a specific value of the total ther- 

mal energy f T2d V, the elastic energy is minimized/maximized 
when T = ((w - &)/(3co - 1)c~) div a, where & is the mini- 
mum/maximum eigenvalue of the Cosserat spectrum. This vari- 
ational principle provides some physical understanding of the 
thermoelastic solution in terms of the stationarity of the elastic 
energy. 

Heat Flow Past a Spherical Rigid Inclusion 
We will provide two examples of heat flow past a spherical 

rigid inclusion to illustrate this solution technique for thermo- 
elasticity and to examine the variational principle in terms of 
the Cosserat Spectrum theory. 

For a spherical rigid inclusion in an infinite space, the discrete 
Cosserat eigenvalue &n, the discrete eigenvector &,, and their 
divergences V" &,, for an axisymmetric problem are as follows 
(Liu and Markenscoff, 1997): 

2 n +  1 
(.O n - -  

n + l  

a,, = C,,(r 2 - r~) grad F-(,,+i) 

V" a,, = - 2 ( n  + 1)C,,F (,,+1) 

where 

(11) 

12) 

13) 

2 n -  1 
( C , , )  2 - 

16(n + 1)rcr~ 

F (,,+~)= (@)"+lP,,(cosO) 

14) 

1 5 )  

and P,, (cos 0) is the Legendre polynomial of degree n, and n 
= 1 , 2 , 3  . . . .  

General Heat Flow 
In order to prove the fast convergence of the discrete Cosserat 

eigenfunctions and the advantage of the applicability of Eq. 
(8),  we choose, as an example, a general enough temperature 
field, satisfying 

A T =  0 r--> ro (16a) 

fro sin 0 
T -  r = ro (16b) 

0 

where r is a constant, r0 the radius of the spherical rigid inclu- 
sion, and 0 is the angle measured from the z-axis, as shown in 
Fig. 1. This temperature is axisymmetric in the azimuthal angle 
qo, which is not shown in the figure. The heat flow produces a 
sinc function type of temperature distribution on the boundary 
r =  ro. 

This is an axisymmetric problem. The harmonic temperature 
field T is expanded in the form of a series of spherical harmonic 
functions 

T(r, O) = fro ~ TnF-(n+,) (17) 
n = O  

where F_(,+~) is defined by Eq. (15) and n = 0, 1, 2 . . . .  Tn is 
coefficients to be determined. Substituting Eq. (17) into the 
boundary condition Eq. (16b) yields 
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undistm'bed heat flow T~= Tz 

Z 

Fig. 1 Spherical coordinate system for a spherical rigid inclusion 

sin 0 
- ~ T~P,,(cos 0). (18) 

0 n=0 

The orthogonality property of the Legendre polynomials 
allows T,, to  be determined by 

2n + 1 U sin 0 
T. - ~ J 0  ~ P,,(cos 0) sin 0 dO. (19) 

We now study the displacement u caused by the temperature 
field Eq. (17).  The current boundary value problem is posed 
as follows: 

Au + w V V ' u  = ( 3 w -  1)o!VT r >- r0 (20a) 

u = 0 r = r0. (20b) 

The displacement u = 0 on the surface of the rigid inclusion 
r = ro, while the traction vanishes at infinity. 

We will study the current boundary value problem as follows. 
We consider first a boundary value problem of displacement 
for a spherical rigid inclusion in an infinite space at both r = 
ro and r = ~,  namely 

A u + w V V ' u =  ( 3 w -  1)c~VT r > - r 0  (21a) 

u = 0 r = r0, ~.  (21b) 

Substituting the temperature field Eq. (17) into the represen- 
tation theorem for the first boundary value problem Eq. (8) ,  
we have 

u = ( 3 w - 1 ) c ~ T r o  Y. y.  ~~"T" (F (m+l),V°/~n)b~n (22a) 
n = t m =00o'l -- (JO 

where 

i F  (,,+1), V" tL,) =- f F (,,,+l)V" ff,,dV. (22b) 

Substituting the Cosserat eigenvalues and eigenvectors given 
in Eqs. ( 1 1 ) - ( 1 5 )  into Eq. (22),  we obtain the solution to Eq. 
(21) as  follows: 

(3w - l)o~Tr~ ~ T,, 

u - 2 ,,=,2" (n + 1)w + (2n + 1) 

dPn 

Equation (23) renders zero traction at infinity; it is also the 
displacement field caused by the temperature components n _> 
1 for the boundary value problem Eq. (20).  By solving Eq. (20) 
directly, we calculate the displacement due to the component n 
= 0 of the temperature field, TroToF 1 "~" "cTo(rg/r), as follows: 

(3 2TS- l gr0+ l) ( rg / bto = 1 - -  F- ' -~ .er .  (24) 

Equation (24) is not a Cosserat eigenfunction for the first 
boundary value problem. The displacement remains a constant, 
while the traction vanishes at r = ~.  We can write the solution 
to Eq. (20) in a unified way, which includes the displacement 
given by Eq. (24),  as follows: 

(3w - l ) a T r g  ~ (n + 1)T,, 

u , . -  2 ,,=o(n2. + 1)w + (2n + 1) 

r O  n + 2  

bl 0 - -  

(3w - 1 )aTr  2 ~ T,, 
/ ,  

2 (n + 1)w + (2n + 1) n=O 

-yg-. (25b) 

Using the first N + 1 terms to approximate the dimensionless 
displacement fields ~ and fro, we have 

i f , , .  - 

2u,. ~ ~. ( n +  I )T,  

( 3 w -  l)c~Trg ,__z" o= (n + 1)w + ( 2 n +  1) 

F0 n+ 2 (r) 1 
2uo N T,, 

(3w - 1)ceTr~ (n + 1)w + (2n + 1) 

-Tg- (26b) 

In order to study the convergence property of the discrete 
Cosserat eigenfunctions, we compute the dimensionless dis- 
placement fields ~ and fro. The Poisson's ratio u = 0.26 is used 
in the calculations. 

Based on the computational results shown in Tables 1 - 2  in 
the Appendix for r/ro = 1.1, 2.0 and 0 = 0 deg, 45 deg, 90 
deg, 135 deg, 180 deg, we see that, generally speaking, the 
series of the discrete Cosserat eigenfunctions converges very 
fast. Though the displacement fields are represented by a sum- 
marion of infinite series of the discrete Cosserat eigenfunctions, 
we only need to calculate the first few terms. As an example, 
we choose a point where r/to = 1.1 and 0 = 90 deg in Table 
1. It only takes the first three terms (including n = 0 term) tbr tL 
to converge within absolute error 10-3 and 11 terms to converge 
within 10 5 ; it takes the first 2 terms for if0 to converge within 
10 3 and 10 terms to converge within 10 -5. 

Moreover, the convergence rate depends on field points. For 
the first boundary value problem of a spherical rigid inclusion 
in an infinite space, the farther a field point is away from the 
surface of the rigid inclusion, the faster the displacement field 
converges. To compare with the above-mentioned field point, 
we choose a point where r/ro = 2.0 and 0 = 90 deg in Table 
2. It only takes the first three terms (including n = 0 term) for 
if, to converge within absolute error 10 3 and five terms to 
converge within 10-5; it takes the first two terms for if0 to 
converge within 10-3 and eight terms to converge within 10-2. 
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U n i f o r m  Heat  F low 

The problem of a uniform heat flow past a thermally insulated 
spherical cavity was solved by Florence and Goodier (1959). 
In the present paper, we solve the problem of a uniform heat 
flow past a spherical rigid inclusion and view the solution in 
the context of the variational principle in terms of the Cosserat 
Spectrum theory. 

The harmonic temperature field due to a constant heat flux 
r at infinity, disturbed by a spherical rigid inclusion as shown 
in Fig. l, is given by 

to' 
T = r r + ~r2 j  cos 0. (27) 

This temperature is axisymmetric. It is decomposed into two 
parts T~ = r r  cos 0 and T2 = ( r r ~ / 2 r  2) cos 0. The latter is 
caused by the disturbance of the spherical rigid inclusion. 

The temperature field T~ is a linear function of position z = 
r cos 0, the displacement field corresponding to Ti is given by 

u,. = ~ oerrg + 2to +-------3 

Uo 2 (2-6~ +-3) 

- sin 0 (28b) 
2(2c0 + 3) 

with the corresponding stress 

2 o Tro - G ; 

+ 6 ( 3 ~ + 4 ) ( @ ° ) 4 ]  c ° s O 2 w  + 3  (29a) 

3 ( 3 ~  + 4 )  ( @ ) 4 ]  c ° s 0 2 ~  + 3 ( 2 9 b )  

# 2 oerro 

CTr~ p ~ O'0~ p ~ 0. 

(29c) 

(29d) 

It should be pointed out that, though the temperature Tj = 
r r  cos 0 = 7-z is a linear function of position, the free-expansion 
condition (Timoshenko and Goodier, 1970) cannot be satisfied 
at the boundary r = r0 of the spherical rigid inclusion, and thus 
generates a stress field. 

The temperature distribution T2 = ( r r  3o/2r2) cos 0 produces 
the displacement field 

( 3 c o - 1 ) a r r g  ( ~  ro3'~ cos 0 
u , -  ~ 2w q-- 3 )  _ - r-S J 

(30a) 

U o -  ~ w  + 3) - r3JJ 

with corresponding stress 

or,.,. _ (3w - 1)o~rr0 ( 7r~ 6r~]  
# ~ + 3) - 7 -'1- r 4 /J COS 0 (31a) 

ao___2=G,~ - (3co - 1)o~rr0 (2 ro  2 3r4'~ 
# # ~ + 3) I x r 2 re / cos0  (31b) 

or,.0 _ (3aJ - 1)afro  ( 2rg 3rg'~ 
# ~ + 3) - 7  + r 4 J s in0  (31c) 

Crr~ = ~0~ = 0. (31d) 
We verify that the displacement field Eq. (30) is a Cosserat 

eigenfunction corresponding to the eigenvalue & = - (3/2)  and 
satisfies the additional condition Eq. (4). According to the rep- 
resentation theorem Eq. (8),  for the first boundary value prob- 
lem of a spherical rigid inclusion in an infinite space, the discrete 
Cosserat spectrum is given by Eq. (11) with &,, lying in the 
interval [ - 2 ,  - 3 / 2 ] .  Therefore, & = - ( 3 / 2 )  is the maximum 
eigenvalue, rendering the elastic energy of this problem maxi- 
mum among all temperature distributions with constant thermal 
energy. 

Discuss ion  

For general heat flow past a spherical rigid inclusion, compu- 
tational results show that the infinite series of the discrete Cos- 
serat eigenfunctions converges very fast. Though the displace- 
ment fields are represented by a summation of the discrete 
Cosserat eigenfunctions, we only need to calculate the first few 
terms. The convergence rate depends on field points. 

For the uniform heat flow past a thermally insulated rigid 
inclusion, the temperature field is decomposed of two parts, T 
= T~ + T2, where T1 is the undisturbed uniform temperature 
field with constant gradient, while T2 is introduced by the pres- 
ence of spherical rigid inclusion. The displacement field due to 
T2 is a Cosserat eigenvector corresponding to the maximum 
eigenvalue for the spherical rigid inclusion, thus maximizing 
the elastic energy according to a variational thermoelasfic prin- 
ciple for the Cosserat eigenfunctions. This stationarity of the 
elastic energy was not previously known. 
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A P P E N D I X  

C o m p u t a t i o n a l  R e s u l t s  o f  t h e  D i m e n s i o n l e s s  D i s p l a c e m e n t  F i e l d  d u e  to  a G e n e r a l  H e a t  F l o w  P a s t  a S p h e r i c a l  

R i g i d  I n c l u s i o n  

Table 1 (a) The dimensionless displacement field gr for r / ro = 1.1 

N 8= 0 ° 0= 450 0= 90 ° 0= 1350 0= 180 o 
0.034302 0.034302 0.034302 0.034302 0.034302 
0.053483 0.043893 0.034302 0.024712 0.015122 
0.051048 0.044197 0.035520 0.025017 0.012886 
0.052030 0.043767 0.035520 0.025446 0.011704 
0.051519 0.043915 0.035329 0.025594 0.011193 
0.051821 0.043942 0.035329 0.025567 0.010891 
0.051628 0.043880 0.035389 0.025505 0.010698 

i 0.051758 0.043909 0.035389 0.025476 0.010568 
0.051687 0.043916 0.035364 0.025482 0.010477 
0.051733 0.043898 0.035384 0.025500 0.010411 

10, 0.051684 0.043907 0.035376 0.025509 0.010362 
15 0.051711 0.043905 0.035373 0.025500 0.010243 
20 0.051703 0.043906 0.035372 0.025500 0.010208 
25 0.051706 0.043906 0.035372 0.025500 0.010191 
30 0.051705 0.043906 0.035372 0.025500 0.010185 

Table 2(a) The dimensionless displacement field Ur for r / ro = 2.0 

N 8= 0 ° 8= 450 0= 90 ° 0= 135 ° 0= 180 o 
0.148236 0.148236 0.148238 0.148236 0.148236 

i l  0.193824 0.171030 0.148236 0.125441 0.102647 
0,190640 0.171428 0,149828 0.125839 0.099463 

i 0.191347 0.171119 0.149828 0.126149 0.098757 
4 i 0.191145 0.171177 0.149752 0.126207 0.098555 
5! 0.191210 0.171183 0.149752 0.126201 0.098489 
6; 0.191187 0.171176 0.149759 0.126194 0.098466 
7 0.191196 0.171178 0.149759 0.126192 0.098458 
8 0.191192 0.171178 0.149758 0.126192 0.098454 
9 0.191194 0.171177 0.149758 0.126192 0.098453 

10 0.191193 0.171178 0.149758 0.126192 0.098453 
15 0.191193 0.171178 0.149758 0.126192 0.098452 
20 0.191193 0.171178 0.149758 0.126192 0.098452 
25 0.191193 0.171178 0.149758 0.126192 0.098452 
30i 0.191193 0.171178 0.149758 0.126192 0.098452 

Table 1 (b) The dimensionless displacement field Do for r / r  = 1.1 

N 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

" 1 0  
15 
20 
25 
30 

0 = 0  ° 0=450 0= 900 0= 1350 8= 1800 
0 0 0 0 0 
0 0.008305 0.009590 0.008305 0 
0 0.007251 0.009590 0.009360 0 
0 0.007331 0.009222 0.009440 0 
0 0.007469 0.009222 0.009302 0 
0 0.007372 0.009316 0.009205 0 
0 0.007386 0.009316 0.009191 0 
0 0.007413 0.009281 0.009219 0 
0 0.007389 0.009281 0.009243 0 
0 0.007393 0.009297 0.009247 0 
0 0.007402 0.009297 0.009238 0 
0 0.007396 0.009290 0.009236 0 
0 0.007398 0.009291 0.009234 0 
0 0.007396 0.009292 0.009234 0 
0 0.007398 0.009291 '0.009234 0 

Table 2(b) The dimensionless displacement field Do for r / ro = 2.0 

N 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

lO 
15 
20 
25 
3o 

0 = 0  ° 0=45 ° 8=90 ° 0=1350 0=180 ° 
0 0 0 0 0 
0 0.019740 0.022794 0.019740 0 
0 0.018362 0.022794 0.021119 0 
0 0.018419 0.022529 0.021176 0 
0 0.018474 0.022529 0.021122 0 
0 0.018453 0.022550 0.021101 0 
0 0.018454 0.022550 0.021099 0 
0 0.018456 0.022547 0.021101 0 
0 0.018455 i 0.022547 0.021102 0 
0 0.018455! 0.022548 0.021102 0 

I 

0 0.0184551 0.022540 0.021102 0 
0 0.018455 0.022548 0.021102 0 
0 0.018455 0.022548 0.021102 0 
0 0.018455 0.022548 0.021102 0 
0 0.018455 0.022548 0.021102 0 
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Vibration of Thick Prismatic 
Structures With Three- 
Dimensional Flexibilities 
This paper presents an investigation on free vibration of  thick prismatic structures 
(thick-walled open sections of  L, T, C, and I shapes). The derivation of  a linear 
frequency equation based on an exact three-dimensional small-strain linearly elastic 
principle is presented. This formulation uses one and two-dimensional polynomial 
series toapproximate the spatial displacements of  the thick-walled open sections in 
three dimension. The proposed technique is applicable to vibration of  thick-walled 
open sections of  different cross-sectional geometries and end support conditions. In 
this study, however, we focus primarily on the cantilevered case which has high 
value in practical applications. The perturbation of  frequency responses due to the 
variations of  cross-sectional geometries and wall thicknesses is investigated. First- 
known frequency parameters and three-dimensional deformed mode shapes of  these 
thick-walled open sections are presented in vivid graphical forms. The new results 
may serve as a benchmark reference to future research into the refined beam and 
plate theories and also for  checking the accuracy of new numerical techniques. 

1 Introduction 
The desirable static load-bearing capability of thin or thick- 

walled open sections has widened their applications in many 
branches of engineering. These open sections are Commonly 
employed as supporting members and stiffeners in building 
structures and ship hull designs. Static analyses of these open 
sections are well established. Literature dealing with this subject 
abounds, and design charts detailing the important mechanical 
properties and selection criteria of open sections are covered in 
most engineering texts and design codes. 

However, comprehensive studies on the free vibration of 
these open sections are relatively scarce. Due to the eccentricity 
of the thick-walled open sections, the transverse vibration 
modes of these structures are often complicated by the presence 
of coupled torsional motion. Garland (1940) investigated the 
simultaneous flexure and torsion vibration modes of a C-channel 
beam with a cantilevered end support. The general solutions of 
prismatic structures were obtained by Golley and Grice (1989) 
using the finite strip method, and Le Dret (1989) using a compu- 
tational model via discrete mathematical procedures. Most of 
these works, however, are restricted to the analysis of thin- 
walled members. In other words, these models treat the constitu- 
tive panels as thin plate elements that obey the Kirchhoff-Love 
hypothesis. Special numerical treatments are usually necessary 
at the junctions between panels. At these junctions, the kine- 
matic connectivities are achieved approximately at nodes dis- 
tnbuted along the interfaces. A detailed mathematical treatment 
on the junctions between adjacent panels of these thin-walled 
open sections has been presented recently by Bernadou et al. 
(1989). 

In some practical cases, it is often required that the constitu- 
tive panels of the open sections be of considerable thickness. 
In such cases, the numerical methods based on the thin-plate 
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approximation are erroneous. It is expedient to develop a numer- 
ical model that represents more accurately the thickness effects 
(notably, the transverse shear deformation and rotary inertia) 
of the constitutive panels. The three-dimensional vibration anal- 
yses of elastic solids have been considered earlier (Fromme and 
Leissa, 1970; Hutchinson and Zillmer, 1983; Leissa and Zhang, 
1983; Leissa and Jacob, 1986; Young and Dickinson, 1994, 
1995; Liew and Hung, 1995; Liew et al., 1993, 1995a-c, 1997). 
This study is a complement to the earlier works by providing 
a three-dimensional linear elasticity approach to obtain the gov- 
erning frequency determinant for a thick-walled open section 
of different combinations of end support conditions. 

Starting from the linear small-strain three-dimensional elas- 
ticity theory, the integral expressions for strain and kinetic ener- 
gies of the thick-walled open sections are formulated. These 
are expressed in terms of sets of one and two-dimensional poly- 
nomial functions which approximate the displacement varia- 
tions of the thick-walled open sections in the longitudinal and 
lateral directions. The one-dimensional polynomial functions 
are uniquely constructed to account for the kinematic constraints 
at both ends. The two-dimensional functions, on the other hand, 
automatically satisfy the free-surface boundary conditions on 
the lateral surfaces. The three-dimensional energy functional is 
obtained directly by summing the resulting displacement-based 
energy expressions. Finally, the Ritz minimum energy principle 
is applied to derive the eigenvalue matrix of the thick-walled 
open sections. The resulting eigenvalue matrix is solved itera- 
tively to furnish the three-dimensional frequency results. This 
method models the prismatic structures as a single element for 
the entirely formulation unlike the discrete element methods 
that require many elements for solution. 

Finally, in order to provide new information to the existing 
literature, a set of first-known vibration results in terms of fre- 
quency parameters and mode shapes are presented for cantile- 
vered thick-walled open sections of L, T, C, and I shapes with 
different lengths and cross-sectional dimensions. The accuracy 
and reliability of the eigenvalues are ascertained through com- 
parison with the classical Bernoulli-Euler solutions for slender 
T and I-shaped sections. 

2 Mathematical Formulation 
2.1 Problem Definition. The geometric configuration of 

a homogeneous, isotropic, thick-walled open section is depicted 
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in Fig. 1. The thick-walled open section is defined in a Cartesian 
coordinate system (&, xz, x3) with its origin located at the left 
end as shown in Fig. 1. Except for the edge at x3 = 0 which is 
built in, all other edges are assumed to be free from stresses. 
The vibration frequencies and mode shapes of these cantilevered 
thick-walled open sections are to be determined from a three- 
dimensional displacement-based energy method. In the three- 
dimensional setting, the displacement at a generic point can be 
resolved into three orthogonal components, u~, u2 (lateral sur- 
face) and u3 (longitudinal) parallel to x~, x2 and x3-axes, respec- 
tively. 

2.2 Three-Dimensional Elastic Strain and Kinetic En- 
ergy Expressions. In a Cartesian coordinate system, the linear 
elastic strain energy component, V can be written in an integral 
form as 

'ff.fo V = 2 [A{(1 - v)A1 + 2vA2 

where 

and 

+ (1 - 2v)A3}]dxidx2dx 3 (1) 

A, = (}, + E222 "J¢" E~3 

A 2 = (zlld22 -Jr- 611~33 -{- ~22E33 

A3 = e~2 A- e~3 "4- ~]3 

(2a )  

(2b)  

( 2 c )  

E 
A = (2d) 

(1 + v)(1 - 2v) 

in which E is Young's modulus and u is Poisson's ratio. 
The strain-displacement relations in a rectangular coordinate 

for small deformation are 

1 [0.,  ouj] 
e0 = ~ [ ~ - +  o ~ j  ; i , j  = 1, 2, 3. (3) 

The kinetic energy for free vibration is given by 

r = _P f fR £" [ ( Ou,'~2 + ( Ou='~2 + ( a"3'~2 ] 
2 \ at,I \ at / \ at ] J 

X dxldx2dx 3 (4) 

X2 

Xl T n t ~ T n 3  

fftt" ~ "- "r3t 

where p is the mass density per unit volume. The area integrals 
in Eqs. (1) and (4) are performed over the region, R, of the 
cross section. 

For a linear small-strain simple harmonic motion, the dis- 
placement components assume the following forms: 

(ul(&, &, x3, t); b/2(Xl, X2, X3, t ) ;  /b/3(XI, X2, X3, t)) 

~- ( U l ( X l ,  X2, X3); U2(xi ,  x2, x3);  U3(Xl, x2, x3))e i~t ( 5 )  

where co denotes the frequency of vibration. 
Introducing Eqs. (3) and (5) into the three-dimensional elas- 

tic strain and kinetic energy expressions and eliminating the 
periodic components of Eqs. (1) and (4), yields 

= -- Ui,i ) Vn .... 7 V(  U i j )  2 + (1  2u)(~., 2 
i=l i=1 

l 
+ ~ (1 -- 2 u ) { ( U i , 2  + U2j )  2 + (/--]2,3 + U3,2) 2 

+ (U,,3 + U3,t)2}}]dxldx2dx3 (6a) 

and 

Tmax = T ( U~)dxldx2dx3, ( 6 b )  
= 

The comma notation is adopted here to denote the partial differ- 
entiation. 

The displacement amplitude functions, Ui (x,, &, x3); i = 1, 
2, 3, are approximated by sets of truncated double polynomial 
series in one and two dimensions as follows: 

( U i ( X l ,  x2, x3);~U2(Xl, x2, x3);  U3(Xl, x2, x3)> 
M N 

= <Z Z cL,4&(x,, x~)O~(x3); 
m-I n~l 
M N 

Z 2  2 2 C,.n4,,,,(x,, x2)0~(x3); 
m=l n=l 

M N 
Y~ Y. C3,,~b3,,,(x,, x2)tP~(x3)> (7) 

m 1 tl=[ 

in which C~m,,, C],,, C3,, are the unknown coefficients. The two- 
dimensional polynomials, qS~m, 4'],, q53,, dictate the lateral sur- 
face variations of each displacement component. The one-di- 
mensional polynomials, qJ],, q,2, ~b3, on the other hand, approxi- 
mate the displacement variations in the longitudinal direction. 

2.3 The Formation of Eigenvalue Matrix. Let H be the 
energy fnnctional given by 

1-[ = Vm,× - 7", ..... (8) 

The minimization of this functional with respect to the coeffi- 
cients 

'OC,],,,' 0~,3,,, = <0, 0, 0) (9) 

leads to the governing eigenvalue equation of the form 

k 22 k23 / - k 2 m 22 0 C 2 

Sym k 33 J Sym m 33 C 

Fig. 1 Geometry and dimensions of a thick-walled open section 
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The explicit form of the respective elements in the stiffness 
submatrices k "fl are given by 

l - / /  11 IOlO O0 k,,,;,,~ - - -  (E,, u F,,~)~ 
(1 - 2u) 

) - -  11101 O0 0000 I I 
+ 2  (E,,,~ f , , k ) l ~  + (Emj f , , ~ ) t t  l l a )  

k,,,~,,~ = (1 - 2u) (E]'(~°'F'~I~?)'2 + 2 (E''° F,,D,2} 1 lb)  

,3 (a){ , ,,Ol,, ,c,} 
k,,j,,~= ~ ( l _ 2 u ) ( E , , ;  F,,~),3+~(E,,q F,,e),3 l l c )  

(a)2 
22 __ 01 (11 00 

k"u"~ (I --27,)  b (Emj F,,~)22 

-{ ) 1 ,~o.1 oo oooo , 
+ 2 (E,,,~ F, ,k)22 + ( E , ,  o Fnk)22  l i d )  

,, ( )oo,oo, k"ank ( - - - 7 ~  ( fmj  Fnk  )23 

1 /a2~gpooo, r,,o,~ 
+ 2  

( l i e )  

k]~,,k = (1 - 2u)  
_ _  [E00O0 TTI 1 ~ 

\ ,q * n k  )33 

_ Fnk)33  + I010 O0 + 2 (E,O,)m oo (E,,i F,,k)33 (1 l .f)  

and the elements in the mass submatrix m "~ are given by 

[I m,,0,,k (1 + u) u000 00 ( l  = (E,,a F,k)ll l g )  

2 9 0000 O0 m,,;j,,k = ( 1 + u)(E,,, i Fnk)2 2 ( l lh)  

0 0 0 0  O0 33 = ( 1  -'F l /)(Emj Fnk)33  (11i) 1111 mjnk 

where 

( E : V ' ) , , =  f f O';+'c~'~'~'(x-I'X'2)Oc'ge(z''z=) ctz, dZ2 ( l e a )  
dd~ o.r, ox3 o.r~ oe~ 

(F'~;~)"o = Oz3 ~ <lz, (12b) 

in which 

(m; j )  = (1, 2, . . . ,  (p + l ) ( p  + 2)/2;  1 ,2  . . . . .  

(p + l ) ( p  + 2) /2)  (12c)  

(n ;  k) = (1, 2 . . . . .  q; 1, 2 . . . . .  q) (12d)  

(a;  fl) = ( l ,  2, 3; 1, 2, 3). (12e) 

The normalized variables, x~, x2, and ~ are defined as 

(-g,;-g2; ~ )  = ; 7 ;  . (13) 

The eigenvalue in Eq. (10) is expressed as 

k = a;a~/p/E. (14) 

2.4 The Truncated Double  Series Polynomial -Based 
Shape Functions.  The two-dimensional surface functions in 
Eq. (7) are intrinsically sets of admissible functions which are 
the product of a two-dimensional orthogonal polynomials space 
and a basic function, i.e., 

%(x, ,  x~) = ~(x, ,  x~){ '~  (x,, x~) } 
j 1 

- Z % ~ { % ( x ~ , x ~ ) }  ( 1 5 )  
k I 

in which 

;~ idxjk (16a)  

with 

• J 1  ',&~ = ¢)(x,, x~){i6,(xl, x~)} 

× {;~bk(xl, x2)}dxldx2 (16b) 

ff {;chZ(x,,x2)}d&dx2 (16c)  ¢ 

and the index, i = 1, 2, 3, denotes the respective displacement 
direction. 

The two-dimensional generating function,./j(Xl, x2), may be 
expressed as 

~(xl ,  x2) = x]x~(cos 2 ~r~9) + x~x~(sin 2 7r~) (17) 

where 

r = F ( j  - 13 (lSa) 

s = ~9(cos 2 7r39) + 09 - l / 2 ) ( s i n  2 7r0) (18b) 

0 = ( j  - r 2 - 1)/2 (18c)  

and [ ]  is the greatest integer function, for example, [ l ~ ]  = 4. 

2.5 Treatment  of  Free Wall  Condit ions  and S y m m e t r y  
Considerations.  For a thick-walled open section with free- 
wall conditions, the following boundary conditions are to be 
satisfied; 

(0-,,,,; Tnt ; T, ,3)  = ( 0 ;  0 ;  0 )  ( 1 9 )  

where n and t are the coordinates normal and tangent to the 
wall surface, ~,,, is the normal stress, and r , ,  and %3 are the 
shearing stresses. However, for the Ritz method, only the geo- 
metric boundary conditions need be satisfied in the numerical 
process. 

The two-dimensional lateral surface functions, (b],,(xl, x2), 
~,(x~, x2), 4~],(x,, x2), adopted in this formulation are highly 
accommodative to a wide variety of cross-sectional geometries. 
For free-wall conditions, the basic functions, ~b~(xl, x2); a = 
1, 2, 3, of the two-dimensional polynomial shape functions 
assume the simplest form: 

( ( ~ l ( X l ,  X2) ;  ( ~ 2 ( X , ,  X2) ;  6 ~ ( X l ,  X2) ) = ( 1 ;  l ;  1 ) ,  ( 2 0 )  

Depending on the geometric symmetry inherent in the cross 
section, the vibration modes of the thick-walled open sections 
may be classified into distinct symmetry classes with respect to 
the x~x3 and x2x3-planes. 

2.6 Treatment  of  Different End Supports .  Thick- 
walled open sections can be supported in many ways. De- 
pending on the kinematics constraints imposed at both ends, 
the boundary conditions take on a permutative combinations of 
free (F ) ,  hinged (S), and clamped (C) ends. The respective 
boundary conditions implied in each case are given as follows: 
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• Stress-Free Condition (F).  

(or3; ~-13; ~-23) = (0; 0; 0) (21a) 

• Hinged~Simply Supported Condition (S). 

(ut; u2; ~r3) = (0; 0; 0) (21b) 

• Clamped Condition (C). 

(u~; u2; u3) = (0; 0; 0) (21c) 

The one-dimensional longitudinal functions, O],(x3), 
~p](x3), ~p~(x3), however, are constructed to satisfy only the 
essential geometric boundary conditions of the thick-walled sec- 
tion at both ends, i.e., 

( ' 0 l ;  21~/I; 3~t ')  : ((X3)I~I(X3 -- L)I~i2; 

(x3)2~,(x3 - L)a~; (x3)3~',(x3 - L)3~;) (22) 

wherei~]~ (i = 1, 2 and 3; a = 1 ,2)  are the basic powers of 
the boundary expression. The corresponding value of the basic 
power is chosen to satisfy the geometric boundary conditions at 
both ends of the thick-walled open section are given as follows: 

0 if the ath end is stress free; 
l[]e~ 

1 1 if the ath end is simply supported or clamped. 

(23a) 

2f~ = ~ 0 if the ath end is stress free; 

[ I if the ath end is simply supported or clamped. 

(23b) 

3 ~  : ~ 0 if the ath end is stress free or simply supported; 

t 1 if the ath end is clamped. 

(23c) 

The subsequent one-dimensional polynomial functions in the 
longitudinal direction are constructed according to a recurrence 
formula. 

For P~(x) c { i~k(x); i = 1,2, 3 } and x = x3, the recurrence 
process gives 

Pk+, (X) = { g (x )  -- (9~ } P~.(x) - ®~Pk l(X); 

k =  1 , 2 , 3  . . . . .  (24) 

The polynomial Po(x) is defined as zero and the constants @~ 
and @f. are defined such that the set of polynomials generated 
maintain the orthogonality property: 

f o "  Pj( x )Pk(x)dx  = 6~ (25) 

in which b)k in the above equation is the Kronecker delta func- 
tion. 

From the recurrence relation of Eq. (24) and considering Eq. 
(25), we have 

(O~; (H)~,) = (3Ak/4Ak; 4Ak/sAk-,) (26) 

with 

(3Ak;  4Ak;  5Ak- I )  

=(fi'g(x)e~(x)dx;fjeX(x)dx;f;e~ , ( x ) d x ) .  (27) 

3 Results  and Discuss ion  

The numerical formulation of the three-dimensional elasticity 
solution developed in the previous section has been applied 
to extract the vibration frequencies and mode shapes of the 
cantilevered thick-walled open sections of different cross-sec- 
tional geometries, lengths, and thicknesses. In this study, the L, 
C, T, and I cross sections are assumed to be inscribed within a 
rectangular domain of aspect ratio, b/a = 2.0. Uniform wall 
thicknesses of h/a = 0.1,0.2, and 0.3 are assumed for all cases. 

Convergence study was carried out carefully to establish the 
accuracy of the present method (Hung, 1995). It was found 
that different numbers of terms, q, and olzters of polynomial, 
p,  will be needed for each study case to ascertain the conver- 
gence of the frequency solutions. In this study, the results pre- 
sented herein have been determined by very thorough conver- 
gence study. It was found that reasonably accurate frequency 
parameters were achieved with p = 6 (polynomial order of the 
two-dimensional surface functions) and q = 10 (number of 
terms in the one-dimensional longitudinal functions). Therefore 
p = 6 and q = 10 are used to compute the following results 
which can be used with confidence since their accuracy has 
been ascertain by the convergence study. 

3.1 Comparison Study. The accuracies of the present 
three-dimensional elasticity solutions are further validated by 
comparing with the transverse bending modes obtained from 
the Bernoulli-Euler beam equation for slender beams ol' selected 
cross-sectional shapes. For the transverse vibration of slender 
beams, L/a ~ 100, the well-known Bernoulli-Euler equation is 
commonly used for solutions. The governing beam equation for 
sinusoidal transverse vibration has the following form (Tse et 
al., 1978): 

d4q°(x) /34~o(x) = 0;/34 = -pAc~2 (28) 
d x  4 E1 

Table 1 Comparison of three-dimensional elasticity solutions and the B e r n o u l l i - E u l e r  
equation for slender open sections (h/a = 0 .1 ,  L/a = 100 ,  a/b = 0 .5 ,  a n d  v = 0 .3 )  

Source of 
results 

T-shaped section 
• 3D CPI" 

= 3D AP1: 

I-shaped section 
• 3D CPt 
• 3D AP$ 

Tse et al, (1978) 

!3~L 

1.8830 
1.8832 

1.8797 
1,8797 

1.8751 

Frequency Parameters 

[~2L 133L 

7.8565 
7.8569 

4,7073 
4.7074 

4.6947 
4.6948 

4.6941 

7.8277 
7.8279 

7.8548 

tSolution by complete polynomials, :~Solution by authors' pol nomials 

Multiplier 

(L/a)[(a2A)/l]  j/' 

125.4 

116.3 
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Wall Thickness Mode Sequence Number 
h/a 1 2 3 4 5 6 

0.1 

0.2 

0.3 

0.0136 0.0378 0.0468 0.0701 0.0975 0.1030 

0.0236 0.0438 0.0834 0.0940 0.1804 0.1930 

0.0275 0.0560 0.0854 0.1293 0.2132 0.2755 

Fig. 2 Deformed mode shapes of a cantilevered L-shaped open section (b/a = 2.0 and 
L/a = 5,0) 

where 

~p(x) = displacement amplitude function; 
p = mass density per unit volume; 
A = cross-sectional area; 
E = Young's modulus; 
I = moment of inertia. 

The amplitude function has the general form 

~p(x) = C~ sin fix + C2 cos fix 

+ C3 sinh fix + C4 cosh fix. 

Applying the cantilevered boundary conditions 

Go(O); ~ ' ( 0 ) ;  ~"(L); ~"(L))  = (0; O; O; O) 

leads to the following characteristic equation: 

(29) 

(30) 

cosflLcosh/3L + 1 = 0. (31) 

The relationship between the roots, /3L, and the present fre- 
quency parameter, k, is 

(J~L) 2 \ ~ / /  \ - -- / -- /  X. (32) 

Table 1 shows the comparison of the first three roots com- 
puted from the Bernoulli-Euler beam equation and that obtained 
from the three-dimensional elasticity solutions. For the purpose 
of comparison, the three-dimensional elasticity solutions are 
calculated for T and I-shaped beams of length, L/a = 100, and 
thickness, h/a = 0.1, using the complete set polynomials 
(Leissa and Zhang, 1983) and the authors' polynomials. Both 
polynomials sets lead to convergent values which are less than 
0.1 percent of discrepancy. To ensure that the three-dimensional 

Wall Thickness Mode Sequence Number 
h/a 1 2 3 4 5 6 

0.1 

0.2 

0.3 

0.0345 0.0386 0.0572 0.0885 0.0886 0.1065 

0.0395 0.0423 0.0997 0.1243 0.1718 0.1761 

0.0388 0.0525 0.1000 0.1949 0.2034 0.2043 

Fig. 3 Deformed mode shapes of a cantilevered C-shaped open section (b/a 2.0 and 
L/a = 5,0) 
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Wait Thickness Mode Sequence Number 
h/a 1 2 3 4 5 6 

0.1 

0,2 

0.3 

0.0135 0.0350 0.0479 0.0791 0.0955 0.1130 

0.0216 0.0466 0.0769 0.0935 0.1819 0.2026 

0.0251 0.0633 0.0763 0.1266 0.2228 0.2795 

Fig. 4 Deformed mode shapes of a cantilevered T-shaped open section (b/a = 2.0 and 
L/a = 5,0) 

elasticity solutions obtained are corresponding to the transverse 
bending modes, the respective deformed mode shapes have been 
examined beforehand. From Table 1, it is noted that the present 
three-dimensional solutions compared well with the Bernoulli- 
Euler beam solutions for the limiting case of a long slender 
beam. 

3.2 Vibration Frequencies and Mode Shapes. The vi- 
bration frequencies and mode shapes of several thick-walled 
open sections have been computed. The thickness ratios, h/a ,  
for this study are taken to be 0.2 and 0.3. Much information can 
be gathered from the three-dimensional vibration mode shapes 
presented in Figs. 2 to 5. The vibration mode shapes are com- 
puted for cantilevered sections with length-to-width ratio of L~ 
a = 5.0, and b/a  = 2.0. 

Figure 2 shows the deformed geometries of the L-shaped 
section with different thickness ratios, h/a.  The first (funda- 
mental) mode in all cases exhibits simultaneous flexural and 

torsional motions. In higher modes, the coupling remains strong. 
Higher modes in this case are distinguished by the higher wave 
number in the longitudinal direction. 

The three-dimensional deformed mode shapes of the C- 
shaped section are presented in Fig. 3. Due to the symmetry 
inherent in the cross section (about the xl-axis), the deformed 
geometries are marked by the appearance of strong symmetry. 
At the thickness ratio of h/a  = 0.1, the fundamental mode 
shows coupling between the torsional and transverse bending 
motions. This mode appears as the second normal mode for C- 
shaped sections with h/a  = 0.2 and 0.3. Flange-wise motions 
are observed for the lowest modes with h/a  = 0.1. At a higher 
thickness ratio, the flange-wise deformations are less obvious 
in the lower modes of vibration. The first and fourth modes of 
the C-shaped section with h/a  = 0.3 are found to be the first 
and second pure transverse bending modes. 

For the T-shaped section depicted in Fig. 4, it is noted that 
except for the first transverse bending mode about the x,-axis 

Waft Thickness Mode Sequence Number 
h/a 1 2 3 4 5 6 

0,1 

0,2 

0.3 

0.0284 0 , 0 3 8 9  0.0843 0.0855 0.1123 0,1746 

0.0301 0.0512 0 . 0 8 3 0  0 . 1 5 9 8  0.1824 0.2100 

0.0317 0.0668 0.0814 0.1746 0.2396 0.2803 

Fig. 5 Deformed mode shapes of a cantilevered I-shaped open section (b/a = 2.0 and 
L/a = 5.0) 
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(such as the fourth mode of h/a = 0.1; the third mode of h/a 
= 0.2 and 0.3), the other modes showing a strong coupling 
between the flexural and torsional vibration motions. It is ob- 
served that the thickness increases while the vibration frequency 
decreases. Mode switchings are also observed in this plot as 
the thickness ratio changes from 0.1 to 0.2. 

Finally, the deformed mode shapes of an I-shaped section 
are presented in Fig. 5. This geometry possesses dual axes of 
symmetry. It is interesting to note that despite the different 
thickness ratios, the fundamental mode exhibits pure transverse 
bending motion about the x2-axis. Pure torsional modes are 
observed in the second mode. And the third fundamental mode 
is a pure transverse bending motion about the x~-axis. The higher 
modes involve torsional and transverse bending motions of 
higher order. Mode switchings are evident only in the higher 
modes. As the thickness ratio changes from 0.1 to 0.2, the fourth 
mode (h/a = 0.1 ) becomes the fifth mode (h/a = 0.2). 

4 Conc lus ions  

A three-dimensional elasticity model for the free vibration 
of thick-walled open sections with a built-in end is developed. 
The integral expressions for strain and kinetic energies of the 
thick-walled open sections are derived from the linear small- 
strain three-dimensional elasticity theory. The Ritz minimum 
energy principle is used to operate on the energy functional and 
culminated to a linear eigenvalue equation. The solution process 
made use of a set of uniquely constructed one and two-dimen- 
sional polynomial series. The orthogonality inherent in these 
polynomial series has led to a better computational efficiency. 
The versatility of the two-dimensional surface function to ac- 
commodate the thick prismatic structures of different cross- 
sectional geometries has been demonstrated for the thick-walled 
open sections of L, C, T, and I shapes. Based on the present 
model, the effects of wall thickness, effective length, and cross- 
sectional geometries on the natural frequencies of the thick- 
walled open sections are investigated and discussed. Vivid 
three-dimensional mode-shape plots are generated for selected 
dimensions. It is believed that the three-dimensional elasticity 
model could serve to enhance our understanding on the physics 
of vibration of this kind. 
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Analysis for Elastic Strips Under 
Concentrated Loads 
The problem of a general anisotropic elastic strip under concentrated loads is ana- 
lyzed. By using the Stroh formalism for anisotropic elasticity in conjunction with the 
Fourier transform, the elastic fields for a concentrated load are expressed as integrals 
which can be evaluated by residue theory to give eigenfunction expansions. The 
eigenfunction expansions can be divided into two parts. The first part arises from the 
singularities at the origin of the integrands of the Fourier integrals and corresponds" to 
classical beam bending and stretching solutions. The second part consists of the other 
terms in the eigenfunction expansions and corresponds to exponentially decaying self- 
equilibrium solutions. The solution for a concentrated load is used to investigate the 
problems of a pair of collinear compressive loads and three-point bending. 

1 Introduction 
With respect to a rectangular coordinate system (xl, x2, x3) 

with base vectors { e~, e2, e3 }, let an infinite strip occupy the 
region - ~  < x~ < ~, - h / 2  < x2 < h/2, h being the thickness 
of the strip. The paper is concerned with the solution for the 
strip in the presence of concentrated loads as shown in Fig. 1. 

Filon (1903) used the Fourier series to obtain an approximate 
solution for a finite strip, - L  <- Xl <- L, - h i 2  <- x2 <- h/2. 
The approximate solution yields the exact tractions on the edges 
x2 = +h/2 but gives only the correct traction resultants and 
moments at the ends x~ = +L. In the case of infinite strip 
Filon's solution is expressed in terms of Fourier integral. An- 
other related type of problem is that of a semi-infinite strip, 0 
<- Xl < 0% - h / 2  <- x2 <- h/2, subjected to end loads at Xl = 
0. The semi-infinite strip problem was considered by Papkovich 
( 194l ), Fadle ( 1941 ), and Johnson and Little ( 1965 ). For self- 
equilibrated end loads, the solution is expressed in terms of 
eigenfunction expansions which satisfy the traction-free condi- 
tions on x 2 = +_h/2 and decay exponentially as Xl increases. 
Buchwald (1964) showed that the singularities of the Fourier 
integrals for infinite strip at the origin give rise to the classical 
beam stretching and bending theories and that the Papkovich- 
Fadle functions are connected with other singularities of the 
Fourier integrals. An exact solution for finite plates with arbi- 
trary edge forces were given by Baker et al. (1993). A general 
method for finite plate problem was discussed by  Meleshko 
(1995). The aforementioned works are for isotropic elasticity. 

Filon's approach was extended to orthotropic materials by 
Gerhardt and Liu (1983) and Whitney (1985) and to generalb, 
orthotropic materials by Sullivan and Van Oene (1986). Exten- 
sions of the Papkovich-Fadle functions to certainanisotropic 
elastic strips have been carried out by Horgan (1972), Choi 
and Horgan (1977), and Crafter et al. (1993) and to generally 
anisotropic strips by Wang et al. (1993). The symmetric state 
of stress caused by a pair of collinear compressive loads on 
opposite sides of an orthotropic strip were examined by Matemi- 
lola et al. (1995). Particular attention was focused on diffusion 
rates of stress. It was found that the first complex eigenvalue 
has a major influence on the exponential decay of normal stress 
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at the middle surface. The Fourier integral for a dislocation in 
an infinite anisotropic strip was given by Wu and Chiu (1995). 
The main objective of the present paper is to generalize Buch- 
wald's results (1964) to anisotropic material. The solution for 
a concentrated force on the surface of an infinite anisotropic 
strip is developed. The Fourier transform synthesized with 
Stroh's formalism (1958) developed by Wu and Chiu (1995) 
is followed. Although the Fourier transform of the present solu- 
tion can also be obtained by the procedure in Wu and Chiu 
(1995), the expression so obtained involves functions which 
are not analytic in the transform variable. An analytic expression 
is derived here to yield eigenfunction expansions by residue 
theory. The concentrated load solution is used to investigate the 
problems of a pair of collinear compressive loads and three- 
point bending. In the case of three-point bending, an accurate 
approximate expression for the center deflection for a general 
anisotropic material was proposed based on the eigenfunction 
corresponding to the pole at the origin. 

The plan of the paper is as follows. Basic equations are 
introduced in Section 2. The solution in the form of Fourier 
integrals for a concentrated load is discussed in Section 3. 
Eigenfunction expansions obtained from Fourier integrals are 
also derived in Section 3. The problems of a pair of collinear 
compressive loads and three-point bending are studied in Sec- 
tion 4. 

2 Basic Equations 

In the following discussion vectors or matrices are denoted 
by boldfaced letters. A subscript comma denotes partial differ- 
entiation and repeated Latin indices imply summation from 1 
to 3, unless noted otherwise. Summation over Greek indices is 
indicated explicitly. 

For a homogeneous anisotropic body, the generalized Hookes 
law and the equations of equilibrium are given as 

co" u = Cijk*uea ( 1 ) 

~u.J = 0 (2) 

where uk and a u is the displacement and stress component, 
respectively, and Cuet is the component of the elasticity tensor. 
If the displacement u depends only on xl and x2, so does the 
corresponding stress tensor o'. In view of Eq. (2), a stress 
function ~ = qSke~ can be introduced, such that 

(Yil = --1~1i.2, ~Ti2 = ~bi,1, i = 1, 2 ,  3. (3) 
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X z 

X, 

Fig. 1 An infinite strip under a concentrated load 

Substitution of Eq. (3) into Eq. ( 1 ) yields 

Q u ,  + Ru.2 = - ~b.~ 

R~u~ + Tu~ = ~b,~ (4) 

where the matrices Q,  R,  and T are defined as 

Qik = Cilt~l 

Ri,~ = Ci lk~ 

T~ : C ~ .  

Equation (4) can be rewritten as (Chadwick and Smith, 1977) 

w~ = N w l  (5) 

where 

1 

Equation (14) provides six roots, p~, K = l . . . . .  6. Since p~ 
are complex if the strain energy is positive definite (Eshelby et 
al., 1953), we can let 

P,.,3 = ff,~. ~[p,~] > 0 

~+_~ = ~ , K  = 1 , 2 , 3  

where 3 denotes imaginary part and overbar stands for complex 
conjugate. 

The matrix function e ~ Y  possesses properties associated 
with the exponential function: 

e i~xy = I ,  when ~vx2 = 0 (15) 

e iwx2N = e i~(.,2-Yo)Ne iwyoN ( l 6) 

e i ~ " Y  = (etC.,y) i (17) 

From Eqs. (15) and (13),  we have 

G~(w, 0) : I ,  G2(w, 0) = 1~3(w, 0) = 0. (18) 

Let the derivative of w with respect to xt be denoted by v, 
i.e., 

V = W t  = I ~  ] (19) 

and 

N = [  NI N2 1 
N3 N~'' (7) 

Nt = - T - t R  7", (8) 

N 2 = T  i = N ~ ,  (9) 

N3 = R T - I R  7~- Q = N~'. (10) 

The Fourier transform of w, ~,, defined by 

~¢(w, x2) = / ~  W(Xl, x2)e-i~'Xldxl (11) 

can be represented as (Wu and Chiu, 1995) 

'~¢(00, X2) : ei~('~2-Y°)Nw(w, YO), ( 1 2 )  

where Y0 is an arbitrary constant and e i~xy is a six-by-six matrix 
function given by 

ei'°xeN [ G l ( ~ ' x 2 )  G2(w'x2)  I (13) 
= ~j3(~.,j ' X2) CI 1T(~, X2) ' 

and 

I~1(~.) , X2) = A (e i~pX:) B "r + .A (ei~'~"~) B T, 

G2(w, x2) = A (e i~''~) A ~ + A (ei~lT~-) A 7", 

{~3(w, x2) = B (ei'~P":) B T + B (e i ~  )B r 

Here A = [aL, a2, a3] and B = [bl ,  b2, b3] and (ei~PX2) and 
(ei~Px~) stand for 3 × 3 diagonal matrices with e~'-x2 and 
ei~',x~a = 1, 2, 3, respectively, as th e diagonal elements. The 
complex three-dimensional vectors a and b and the complex 
scalar p are Stroh's eigenvectors and eigenvalues related by 

where 

d = U.l , t = ~b.l = crk2ek. (20) 

From Eq. (12),  the Fourier transform of v, ~ can be expressed 
as 

~(co, x2) = i 0 ~  = ei~"2 Y0)Nv(o), YO) (21) 

where ~(~ ,  Yo) : i ~ ( w ,  Yo). 
In the above expressions, the complex constants p,  are as- 

sumed to be distinct. Consequently the formulation cannot be 
applied directly to isotropic materials for whichp  = i is a double 
root for plane-strain deformation. However, in many problems, 
including the one considered in this paper, results for isotropic 
materials can be obtained by a limiting process discussed in 
(Wu, 1991 ). 

3 Solut ion of  a Concentrated Force  
In this section, the elastic fields in an infinite strip of  thickness 

h = 2 due to a concentrated load F on the surface are derived. 
The (xt, x3) plane is taken as the central plane of the strip. The 
configuration is shown in Fig. 1. 

Without loss of  generality let a concentrated force F = Fke~ 
be located at x~ = 0, x2 = 1. The boundary conditions are given 
by 

t(x~, 1) = 6 (x t )F  (22) 

t(x~, - l )  = 0 (23) 

where 6(xl ) is the Dirac delta function. The Fourier transforms 
of Eqs. (22) and (23) are given as 

t(x~, 1) = F (24) 

t (x , ,  - t )  = 0. (25) 

Let ~ have the form given by Eq. (21) with yo = - 1, i.e., 
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Table 1 Stroh's eigenvalues p and the first two roots of Eq. (34) for isotropic material and the 
fiber-reinforced vinyl ester with various fiber orientations 

P 

kl 
k2 

isotropic 0 = 45 ° ¢ = 0 ° ¢ = 45 ° ¢ = 90 ° 
2.0618i 2.7389i 0.3035+0.9193i 0.3651i 

i 1.0238i 0.6597i -0.7648 + 0.6443i 1.5159i 
O. 8471i 1. 0470i  -0.0459+0. 9989i 0.9551i 

2.1062 + 1.1253i 1.6787 1.2388 1.8745 + 0.1557i 2.2382 
5.3563 + 1.5511i 2.252 + 0.9074/ 2.3541 + 0.4430i 3.1640 + 0.2508i 4.2536 + 0.8004i 

(26) d0 ~ q { F  = i=L--~-qi. (33) 

where Eq. (25) at x2 = - 1  has been used. The vector d0 can 
be determined from Eq. (24) as 

d0 = 113(~, 2)-1F (27) 

where (]3 is defined in Eq. (13).  
The solution of v is obtained by inverting Eq. (26) with Eq. 

(27) as 

v = ~ ei~,~da;. (28) 

Note that since G3 = 0 at cJ = 0 by Eq. (18),  the principal 
values of Eq. (28) must be taken. By the standard Fourier 
transform inversion, v can be replaced by the sums of residues 
at the appropriate poles as follows: 

v = Y~ v <">, (29) 
n = 0  

where 

v ~'') = %i Res [eiWXlv(6d, X2)]{ . . . .  • (30) 

Here 3'0 = ½, Y,, = 1 otherwise and ~0 = 0, ~,, * 0, n = 1, 2, 
. . . .  are the poles of ~e in the upper half complex w-plane. 
Equation (29) converge for x~ + Cemax(X2 -- 1) except x~ = 0 
and x2 = 1. Here am~x is the maximum of the real parts of  p~, 
Pz, andp3 in Eq. (14).  

Denote by A~ and q~, i = 1, 2, 3, the eigenvalues and eigen- 
vectors of G3(~,  2),  i.e., 

G3(Lv, 2)qi  = Aiqi no sum on i. (31) 

As G3 is symmetric, the eigenvectors q~q~ can be normalized 
such that 

q ~ %  = 6,/ .  

The matrix [G3(~,  2)] -1 can be represented as 

1 
[G3(w, 2 ) ] - '  : ~ ~ i  q,q~. (32) 

i=1 

Substitution of  Eq. (32) into Eq. (27) yields 

i 
F 

x l 
IJ x I I' 

3" 

Fig. 2 An infinite strip under a pair of collinear compressive loads 

The poles of  ~ are given by the roots of 

{t~3(w, 2)1 = A1A2A3 = O. (34) 

If aJ,, is a root, - o~, as well as - c~, are also roots (Wang et al., 
1993). If ~o, is a root of multiplicity m~ of ZX~ = 0, Eq. (30) 
can be evaluated by the well-known residue formula as 

1 0 m -̀I ( 
v <"> = 'y,,i ~ (mi - 1 )! 0 7  -'71 ((x)  - -  0 . ) , , )  m' - -  

q, (co)rF 

A,(w) 

' '~+I N F q i  ( w )  
x e ' ~ e ' ~  ~ [ O ] )  . . . . .  . (35) 

Each term given by Eq. (35) is an eigenfunction that satisfies 
traction-free conditions on the boundaries of the strip. For c~, 
¢ 0 the eigenfunctions decay exponentially as x, increases. 
Moreover, the corresponding stress functions ~b also vanish on 
the boundaries so that the stresses are self-equilibrated (Wang 
et al., 1993). The eigenfunctions derived by Wang et al. (1993) 
are special cases of Eq. (35) for n * 0 when all nonzero poles 
are simple (mi = l ) .  The fact that the eigenfunctions due to 
opposed transverse tbrces are equivalent to the ones due to self- 
equilibrating end disturbance was noted by Durban and Stronge 
(1992). 

The eigenfunction v <°) corresponding to a3 = 0 is derived in 
the Appendix. The result can be expressed as 

v <°> = v~ °> + vl, °) (36) 

3.0,  

22 

Fig. 3 
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0"=2 as a function of X for collinear compressive loading 
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Fig. 4 comparison of the one-term and two-term approximations with 
the midplane stress, for (a) isotropic material, (b) composite with 0 = 
45 deg, (c) ~ = 0 deg, (d) ~ = 45 deg, (e) ~ = 90 deg 

Here  *s" (0) is g iven  by  

s = , ( 3 7 )  

w h e r e  the  ma t r ix  N~ -'~ is the  p s e u d o - i n v e r s e  o f  N3 def ined  by 

N3N(3-1) = e le l  r + e3e r.  

v~ °) is g iven  by  

v~, °) = ~ g T ( 0 )  3A~5) (0)  g2 (0 )  ( 3 8 )  
2 A ~ " ( 0 )  2 0 A ~ " ( 0 )  2 

w h e r e  

re,1 +r (1-x2)N[ o ] ] 0 ] ( 3 9 )  
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g~(O) = F~[~ ]  . (40) 

A~"(0) and A~5)(0) are given by Eq. ( A l l )  and Eq. ( A I 3 ) ,  

respectively, and q~(0)  is given by Eq. (A14) .  
The stresses c~]~ ) and a~'i ~ obtained by substituting Eq. (37) 

into Eq. (5) are 

cr ~,,i ) _ F~ cr ~,,i ) _ F3 (41) 
4 '  4 

Thus v~. °) describes a combined state of uniform compression 
and antiplane shearing. The stresses (7}~), i = 1, 3, corresponding 
to v~ °~ are obtained by substituting Eq. (38) into Eq. (5) as 

o-~'~ ) = - ~ (Fzx ,  + F t ) x z  

1 S~5 

3F2 ( ~ ) I  511 ~'~15 1 
c7~) = T X~ -- S~, + ~ r4 -- ($4 + $6) S55 J 

3S=5 
+ . (F2x~ + F l )x2  (43) 

4 $55 

where re and s~ are defined by Eq. (A4) .  On the cross section 
normal to the xwaxis, the traction resultants of a}~ ~ are 

f f f o ~ ) d x 2  = ~r~dx2  = 0, o.~)dx2 _ F2 (44) 
I I I 2 

and the moment produced by cr~; } is 

f _ o.~)x~dx~ I = ~(F2Xl + F i ) ,  ( 4 5 )  
1 

Thus the stresses represents a classical solution for a cantilever 
beam of length Xl subjected to a transverse force F2/2  and a 
bending moment F~/2 at Xl = 0. Equation (42),  when special- 
ized for monocfinic material, recovers the result reported in 
(Lekhnitskii, 1968). 

It is of interest to find the slope of the deflection curve of 
the centroidal axis x2 = 0 due to F2. The slope obtained from 
Eq. (38) is given by 

Oh/Z__ 30= x~F2 - ~F2 (46) 
Oxl 8S55 

where ® is given by eqn (A4)  and f~ by 

f~ 3 (  A~5)(0) ) - - -  rz + - -  + 2 , ( 4 7 )  
2A ~"(0) 10A ~"(0) 

with r2 defined by Eq. (A4) .  The first term on the right-hand 
side of Eq. (46) results from flexural bending and the second 
term is the rotation due to shear deformation. 

Equation (35) is the eigenfunction valid for xl + cema×(x2 - 
1) ~- 0 except x~ = 0 and x2 = 1 under a force F applied on 

xt = 0 and x2 = 1. By considering a new coordinate x~' obtained 
by rotating the xl coordinates about the x2-axis by 7r, the eigen- 
functions valid for x~ + c~.,in(x2 - 1 ) ~ 0, except xl = 0 and 
x2 = 1, can be derived. Here C~mi, is the minimum of the real 
parts o f p t ,  p2, and p3 in Eq. (14).  It is noted that for ~m~, = 
Ce ...... = 0, V admits eigenfunction expansions in the entire strip 
except Xl = 0, x2 = 1. For nonzero Cem~, and Olmin, however, 
there is a triangular region, c~mi.( 1 - x2) < xl < tern,x( 1 -- X2), 
where no eigenfunction expansions exist for v. If the force is 

applied at the surface x2 = - l, the corresponding eigenfunctions 

can be derived by considering a new reference coordinate x[ 
obtained by rotating the xi coordinates about the x3-axis by 7r. 

4 N u m e r i c a l  E x a m p l e s  

In this section the solution for a concentrated force is used 
to study the problems of a strip subjected to a pair of collinear 
compressive forces and three-point bending by the principle of 
superposition. The material considered is a vinyl ester rein- 
forced by unidirectional glass fiber with the following properties 
with respect to the principal material coordinates (Sullivan and 
Van Oene, 1986): 

E1 = 24.4 GPa 

E2 = 6.89 GPa 

G12 = 2.85 GPa 

vie = v23 = 0.325 (48) 

where 1-direction is parallel to the fibers, Ee are Young's  mod- 
uli, Gij are shear moduli, and v U are Poisson's ratios. In the 
numerical examples considered, the material principal axes 
were obtained either by rotating an angle ff about the x3-axis 
or 0 about the x2-axis; Note that in the latter case the plane 
deformation and antiplane deformation are coupled. For com- 
parison purposes, the results for an isotropic structural steel 
with Young's  modulus E = 204 GPa and Poisson's ratio v = 
0.29 were also considered. 

In general, eigenfunction expansions were employed for nu- 
merical calculations when the series were convergent and only 
a few terms were needed to be included to ensure errors within 
10 6. In regions where the convergence was slow or the series 
diverged, the numerical results were obtained by evaluating the 
integral form of the solutions. The computations for glass fiber/ 
vinyl ester were done with k0 = 0 deg, 45 deg, 90 deg and 0 
= 45 deg. Stroh's eigenvalues p ' s  for each case are listed in 
Table 1. The eigenvalues p are purely imaginary for all materials 
except k0 = 45 deg. Consequently, the eigenfunction expansions 
are uniformly convergent for all materials except ~ = 45 deg. 

4.1 Col l lnear  C o m p r e s s i v e  L o a d i n g .  As shown in Fig. 
2, an infinite strip of thickness h is subjected to a pair of  collin- 
ear compressive loads of magnitude F at x~ = 0, x2 = _+h/2. 
Since the resultant force and moment vanish on the cross sec- 
tions, only the eigenfunctions corresponding to the nonzero 
poles need to be summed in the series solutions. Figure 3 shows 
the results of the dimensionless ~22 = 7rhaz2 / (4F)  as a function 
of X = 2 x ~ / h  at x2 = 0. The result for isotropic material was 
checked to agree with that reported by Filon (1903).  The stress 
distributions for the fiber-reinforced vinyl ester with qJ = 0 deg 
and 0 = 45 deg are similar to that for isotropic material. For ~0 
= 90 deg, the stress exhibits a much higher peak value and 
decays more rapidly; whereas for 0 = 45 deg, the stress exhibits 
a lower peak value and decays more slowly. 

The problem has been investigated by Matemilola et al. 
(1995) for orthotropic materials. It was found that at distances 
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Fig. 5 An infinite strip under three-point bending 
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larger than one quarter of the thickness (X > 0.5 ), a22 is closely 
represented by the sum of the eigenfunctions up to and including 
the first complex eigenfunction as well as its conjugate. The 
first two values of kn = -ico,,, n = 1, 2 in the order of increasing 
real part for each case are given in Table 1. The eigenvalues 
that yield antisymmetric distributions of ~r22 are not listed in 
Table 1. The first complex eigenvalue is k~ for isotropic material 
and the composite material with ~ = 45 deg. In other cases the 
first complex eigenvalue is k2. The approximations obtained by 
taking the first one or two terms in the eigenfnnction expansions 
are given in Fig. 4 ( a ) - 4 ( e ) .  Note that in the case of complex 
eigenvalue, the eigencomponent is twice the real part of the 
eigenfunction. Indeed for X > 0.5, the stress distribution is 
closely represented by the one-term approximation for isotropic 
material and the two-term approximation for orthotropic com- 
posites with ~b = 0 deg. For the orthotropic composite with ~O 
= 90 deg, the two-term eigenfunction expansion approximates 
the stress well even up to X = 0.3. Although the conclusion 
reached by Matemilola et al. ( 1995 ) is for orthotropic materials, 
it is found that the conclusion also holds for the composite with 
0 = 45 deg. For the composite with ~ = 45 deg, the one-term 
approximation does not represent the stress as closely as in the 
other cases and the two-term approximation offers only slight 
improvement. 

4.2 Three-Point  Bending.  A simply supported plate of 
thickness h and of span L subjected to a concentrated vertical 
force F is simulated by an infinite strip subjected to a vertical 
force F at x~ -- 0, x2 = h / 2  and - F / 2  at xl = ± L / 2 ,  x2 = - h /  
2 as shown in Fig. 5. The problem for orthotropic beams and 
general orthotropic beams has been studied by Whitney (1985) 
and Sullivan and Van Oene (1986), respectively, by the Fourier 
series method. The concentrated load was represented by a dis- 
tribution of uniform stress over a small area in either Whitney 
(1985) or Sullivan and Van Oene (1986). 

The stresses on sections A to E as shown in Fig. 5 were 
calculated for L = 5h. Sections A and E are 0.05h from the 
applied load and the support, respectively. Sections B and D are 
0.01575h fl'om the applied load and the support, respectively. 
Section C is in the middle of the applied force and the support. 
Sections B, C, and D were also examined by Sullivan and Van 
Oene (1986). The results are expressed in terms of the follow- 
ing dimensionless quantities: 

X = 2Xl /h ,  ~ll = 2h2o-11/3FL, ~ 2  = 4ha12/3F,  

Y = 2 x J h ,  ~=3 = 2hZoh3/3FL, ~23 = 4haz3 /3F .  

The distributions of ~1 on A to E are shown in Fig. 6. Note 
that for ~O = 45 deg, ~rt is asymmetric with respect to the x2- 
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axis and the distributions are also shown in Fig, 6 for sections 
A '  to E' ,  which are symmetric to A to E with respect to the 
x~-axis, respectively. The distributions for all the materials con- 
sidered exhibit similar feature. They are essentially linear except 
at the points on the compression side near the applied load or 
the support, where the stress intensifies. For section C the result 
is indistinguishable from that given by classical beam bending 
solution. The distributions for ~2 on A to E are shown in Fig. 
7. The symmetric parabolic distribution with peak value Y~2 = 
1 as given by the classical bending solution only appears on 
section C. On other sections the distributions are asymmetric 
with respect to the centroidal axis and the peak values are 
greater than 1. The peak value increases as the applied loading 
or the support is approached. In particular, on section A the 
peak value is about 3 for qt = 90 deg, and 5 for other materials. 
On section A '  the peak value exceeds 7 for 0 = 45. The stresses 
in the overhang were also calculated. The results show that on 
the section one thickness away from the support the maximum 
~1~ ranges from 0.0003 (0 = 90 deg) to 0.007 (~0 = 45 deg) 
and maximum ~12 varies from 0.002 (~0 = 90 deg) to 0.03 (~0 
= 45 deg). On the section, one and a half thickness away from 
the support, all stresses are within 0.002. Thus although the 
overhang considered here is infinite, the results may be regarded 

as good approximations for finite overhang longer than one 
thickness of the strip. 

A quantity of interest in three-point bending tests is the center 
deflection. Here the center deflection vc is defined as Vc = - u 2  (0,  
O) + ½(u2(L/2,  O) + u z ( - L / 2 ,  0)). Based on Eq. (46),. an 
approximate expression for vc is given by 

where 

v,. = v~ b) + v~. '*~ (49) 

v}b ~ = _ _ F L  3 , V~s~ = L [~F (50) 
h 3z~x ~" (0) h 

and A ;"(0) and f~ are given by Eq. (AI 1 ) and Eq. (47), respec- 
tively. The term v~. b~ in Eq. (49) is due to flexural bending and 
v~ s~ induced by shear deformation. For orthotropic materials Eq. 
(49) becomes 

vc = 48-------'-]-- IkSll + 4~11// 
(51) 

where I = h3/12 is the moment of inertia of the section per 
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Table 2 Center deflections in mm for three-point bending 

isotropie 0 = 4 5  ° ¢ = 0  ° ¢ = 4 5  ° ' ¢ = 9 0  ° 

v~ 0.156 3.098 1.702 3.988 4.537 

v~b)/v~ 0.90 0.84 0.73 0.95 0.97 

(v~ b) + v~'))/vc 1.00 1.02 1.03 1.01 1.00 

unit length. Equation (51 is for plane-strain deformation. The 
corresponding expression for plane-stress condition, expressed 
in terms of the engineering constants, are 

FL3 II+ l l l  u,2) l (52) 1 2 [ h ~ 2 [  E~ 3 
v , .  - 4 8 E i i  " \ L /  \ ~ -  4 " 

Equation (52) agrees with that given in Timoshenko and 
Goodier (1970) for isotropic material. Tarnopol'skii and Kincis 
(1985) reported an approximate formula containing the first 
two terms of Eq. (52).  The exact values of the center deflection 
for L = 100 ram, h = 20 mm, P = l MN/m are given in Table 
2. The values calculated by Eq. (49) with v~ ~') only and both 
v~. ~'~ and v~ s~ are also shown in Table 2. For comparison purposes 
the approximate values are expressed as fractions of the exact 
values. For all materials considered, the center deflections are 
underestimated by v~P ~. Indeed the value predicted by v~/') is 90 
percent of the exact value for isotropic material and is only 73 
percent for the composite with tp = 0 deg. However, if v! ') is 
included, Eq. (49) yields very accurate approximations with 
errors within three percent higher than the exact values. 

5 C o n c l u d i n g  R e m a r k s  

An elasticity solution for a general anisotropic infinite strip 
under a concentrated load has been derived. It is shown that 
the solution in integral form can be expanded as eigenfunction 
series. However, for some anisotropic materials, the eigenfunc- 
tion expansion is only valid outside certain triangular regions. 
The eigenfunction expansion consists of a part that is exponen- 
tially decaying and self-equilibrium and the other part corre- 
sponding to classical bending and stretching polynomial solu- 
tions. The solution for a concentrated load is used to study 
collinear compression and three-point bending problems. A 
highly accurate approximation is provided for the center deflec- 
tion in the three-point bending problem. 
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A P P E N D I X  

In this Appendix v <°) in Eq. (29) is derived. 
The derivation to be followed requires the knowledge of the 

structures of some matrices discussed here. The matrices Sm 
and N3 defined by Eqs. (8) and (10),  respectively, can be 
efipressed explicitly in terms of the reduced elastic compliances 
Sij given by 

S~; = S~; S~ 3 S3j 
$33 ' (A1)  

where Sij are the contracted notation for the elastic compliances. 
The explicit expressions are (Ting, 1988) 

= - 0 0 , ( a 2 )  
N3 ~ - 8 1 5  0 Sl[ _J 

I r6 1 s 6 ] 

N~ = - r2 0 s2 , 
/'4 0 S 4 

(A3)  

Let 

O = ~ ,~&~ - (~¢,~)2 > 0 ,  

ri : ( - 3 5 5 8 1 i  + 8 1 5 8 5 i ) / O  (i  = 6, 2, 4 ) ,  

si = (SIsSli - SIISsi)/® (i = 6, 2, 4) .  (A4)  

N~ '') = BP"B r + BP"B ~ (A5) 

where n = 1 ,  2 . . . .  and P is the diagonal matrix with Pl, P2, 
and p3 as the diagonal elements. By Eq. (A5) the n th-derivative 
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of G3(co, 2) with respect to w at co = 0, denoted by G3(0, 2) °'~, 
is related to N~ "~ by 

G3(0, 2)(n)(0) = (2i)"N~ ">, n = 1, 2 . . . . .  (A6) 

Since by Eq. (18) 

G3(0, 2) = 0, (A7) 

~ ( 0 )  = 0, i = 1, 2, 3. Differentiating Eq. (31) with respect 
to w and setting co = 0 gives 

2iN3q,(0) = zX[(0)q~(0) i = 1, 2, 3. (AS) 

By Eq. (A2) ,  Eq. (A8) yields ~x~(0) ~ 0, ~ ( 0 )  = 0 and 
zX~ (0) ~ 0 with the corresponding eigenvectors given by 

q t ( 0 )  = ~ l e l  + ~ 3 e 3 ,  

q2(0) = e2, 

q 3 ( 0 )  = @le3 - -  @3el ,  ( A 9 )  

where ~j and ~03 are constants such that ~ + ~0~ = 1. Equation 
(37) is given by the sum of the eigenfunctions associated with 

~ and 2x2 as evaluated by Eq. (35) with m = 1. It can be 

shown that Axe'(0) = 0 and 

q ; ( 0 )  = tel. (A10) 

Furthermore, 

A~"(0) = - i  - -  ( A l l )  
O 

A(24)(0) = 0 (A12) 

ASs)(0 ) 32i{(N~3))11 5 $55 + 5i z --  -- - -  \ 1 " 3  )11 

( liT (2),~ 2 ^ (2) (2) l + o55t*,3 J31 + 2&5(N3 )ii(N3 )31]  (AI3 )  
J 

and 

2 " - 3 ~ / 2  / " 

q ~ ( 0 )  = --  ~ 2S15S54 - $s5514 - SssS56  _1 

(A14) 

The vector v~ °) give by Eq. (38) is obtained by Eq. (35) with 
m = 3 .  
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The Reflection of Guided Waves 
From Circumferential Notches 
in Pipes 
The reflection of the L (0, 2), axially symmetric guided elastic wave from notches in 
pipes is examined, using laboratory experiments and finite element simulations. The 
results show that the reflection coefficient of this mode is very close to a linear 
function of the circumJerential extent of  the notch, and is a stronger function of the 
through thickness depth of the notch. The motivation for the work was the development 
of a technique for inspecting chemical plant pipework, but the study addresses the 
nature of the reflection function and has general applicability. 

1 Introduction 
The authors are working on a project whose ultimate aim is 

to develop a guided wave testing technique for the inspection 
of pipework in chemical plant, the target being to detect any 
areas of corrosion larger than 3T × 3T in area and T/2 deep 
where T is the pipe wall thickness. The technique is to work 
on insulated pipe in the 50-300 mm bore diameter (nominal 
2 -12  inch) range and an inspection range of at least 15 m from 
the transducer position is required. 

Many researchers starting with Worlton (1957) have investi- 
gated the use of Lamb waves for the inspection of plate-like 
structures and there has also been a considerable amount of 
work on their use in the inspection of pipes and tubing (see, 
for example, Silk and Bainton, 1979; B6ttger et al., 1987a, b; 
Ditri et al., 1992, Duncumb and Keighley, 1987; Brook et al., 
1990; Mohr and H611er, 1976; Thompson et al., 1972; Alers, 
1994). Unfortunately Lamb wave testing is complicated by the 
existence of at least two modes at any given freqnency. In 
practice, it is difficult to generate a single, pure mode so the 
received signal generally contains more than one mode, and the 
proportions of the different modes present is modified by mode 
conversion at defects and other impedance changes. The modes 
are also generally dispersive, which means that the shape of a 
propagating wave changes with distance along the propagation 
path. This makes interpretation of the signals difficult and also 
leads to signal-to-noise problems since the peak amplitude in 
the signal envelope decreases rapidly with distance if the disper- 
sion is strong. Long-range Lamb wave testing is most likely to 
be successful if a single mode is excited in a nondispersive 
region (Alleyne and Cawley, 1992a). 

These problems are particularly acute in pipe testing since at 
a given frequency many more modes exist in a pipe than in a 
plate of similar thickness. Figure 1 shows the group velocity 
dispersion curves over the frequency range 0--100 kHz for a 
152-ram bore diameter (nominal 6-inch schedule 40) steel pipe 
with a walt thickness of 7 ram. The curves were calculated using 
a general-purpose computer program which was developed by 
the authors (Lowe, 1995). It predicts the dispersion curves 
and mode shapes of flat or cylindrical structures with arbitrary 
numbers of layers. In cylindrical systems there may be an inte- 
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ger (n) number of wavelengths around the circumference, n = 
0, 1, 2, 3 . . . . .  When n = 0 the system is axially symmetric 
and when n > 0 the propagating waves have components in 
both the circumferential and axial directions. The modes are 
labelled L(0, m), T(0, m), and F(n,  m) in accordance with, 
for example, Silk and Bainton (1979), where n and m are 
integers and L, T, and F relate to longitudinal, torsional, and 
flexural type modes, respectively. There are 50 modes in the 
fi'equency range up to 100 kHz: - L ( 0 ,  1), L(0, 2); T(0, 1); 
F(n,  1), n <- 23; F(m, 2), m --< 15; F(k, 3), k -< 9. Figure 1 
shows all these modes, though the diagram is too crowded for 
them all to be labeled. The tbrm of the dispersion diagram 
for a 76-mm bore diameter (nominal 3-inch) pipe with a wall 
thickness of 5.5 mln is very similar to that for the 152-mm 
(nominal 6-inch) pipe except that there are fewer F(n, m) 
modes in the fi'equency range below 100 kHz; the velocities of 
the L(0, 1 ) and L(0, 2) modes in the frequency range around 
70 kHz are almost identical in the two pipes. 

The L(0, 2) mode in the fi'equency range around 70 kHz is 
very attractive to use for long-range testing since it is practically 
nondispersive and is also the fastest mode, which means that it 
will be the first signal to arrive at the receiver and so can readily 
be separated by time-domain gating. Its mode shape is similar 
to that of the so mode in plates at low-frequency-thickness prod- 
ucts, the particle motion being predominantly axial and the 
strain being roughly uniform through the pipe wall. It is there- 
fore well suited to the detection of corrosion which may initiate 
at either surface of the pipe. ' 

Alleyne and Cawley (1996a) reported the development of a 
dry coupled piezoelectric transducer system for the excitation 
of the axially symmetric L(0, m) modes in pipes. It comprises 
a ring of piezoelectric elements which are clamped individually 
to the pipe surface. Each transducer element has a dimension 
of 3.2 mm in the circumferential direction and the elements 
impart a force to the pipe wall in the axial direction. Each 
element is faced with a thin brass or steel shim to protect it 
from wear and is backed with tungsten loaded epoxy contained 
in a tufnol housing. The completed unit is coupled to the pipe 
by pressing down on the top of the tufnol housing. The number 
of elements in the ring should be greater than n where F(n,  1 ) 
is the highest order flexural mode whose cut-off frequency is 
within the bandwidth of the excitation signal. The excitation 
signal used in the tests reported here was a 10-cycle 70 kHz 
toneburst modulated by a Hanning window. This has an upper 
40 dB downpoint at 84 kHz so the highest order flexural mode 
at this frequency must be considered. In the 76-mm (nominal 
3-inch) pipe, the highest order mode with a cutoff frequency 
below 84 kHz is F( 11, 1 ), while in the 152-mm (nominal 6- 
inch) pipe it is F(20, 1). In the tests reported here, rings of 16 
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Fig. 1 Group velocity dispersion curves for 152-mm bore diameter (nominal 0-inch schedule 40), 7-ram wall 
thickness steel pipe 

and 32 elements were used on the 76-ram and 152-ram pipes, 
respectively. This gave the possibility of operating at center 
frequencies higher than 70 kHz if this proved to be desirable. 

Ideally, the transducer system would only excite and receive 
the L(0, 2) mode. If the ring has enough elements and is per- 
fectly symmetric, it will not generate or receive the flexural 
modes, and the direction of the stresses generated in the pipe 
is not appropriate for the excitation of torsional modes. How- 
ever, the L(0, 1) mode will be generated and received along 
with L(0, 2). It may be possible to remove the L(0, 1 ) mode 
by adjusting the length of the transducer elements and/or by 
employing multiple rings of transducers. However, Fig. 1 shows 
that the velocity of the L(0, 2) mode is approximately twice 
that of the L(0, l ) mode, so in a simple pipe system with a 
limited number of reflectors, it is straightforward to separate 
the signals corresponding to the two modes in the time domain. 

This paper describes a quantitative study of the reflection of 
the L(0, 2) mode from circumferential notches in pipes, using 
precise laboratory experiments and numerical simulations. The 
aim of the work was to investigate the nature of the reflection 
function. Therefore, while the motivation was the development 
of an inspection technique for industrial pipework, the work 
reported here has much wider relevance to the understanding 
of the scattering of guided waves in cylinders. Consideration 
of the specific practical issues for the exploitation of the tech- 
nique for inspection of industrial pipework, together with the 
results of site trials, are reported elsewhere (Alleyne, Lowe, 
and Cawley, 1996). 

The ultimate aim of the project is the detection of corrosion 
patches around three times the pipe wall thickness in diameter. 
In typical chemical plant pipework, this corresponds to a diame- 
ter of about 20 mm. The wavelength of the L(O, 2) mode at a 
frequency of 70 kHz is approximately 80 mm. It was therefore 
decided to focus the study on defects whose axial extent is 
substantially smaller than the wavelength. A machined notch 
with an axial extent of only four percent of the L(O, 2) wave- 
length was used for all of the experiments, so that the sensitivity 
of the reflections to the depth and circumferential extent could 
be studied without varying the axial extent. The use of a ma- 
chined notch also allows for much better control of the dimen- 
sions than would be possible with simulated corrosion patches, 
thereby enabling a precise study of reflectivity to be undertaken. 

The influence of the axial extent of a notch or corrosion patch 
on the strength of the reflection is not studied here but is worthy 

of brief discussion. Previous work on the transmission of the So 
Lamb mode across a part-thickness notch (Alleyne and Cawley, 
1992b) showed that the transmission coefficient is insensitive 
to the axial extent of the notch provided that this is much less 
than the wavelength. Alleyne and Cawley also found experi- 
mentally (1996b) that the strength of reflection of the L(0, 2) 
mode from a part-thickness notch in a pipe is not altered much 
when the notch is ground out into a trough of the same depth, 
again provided that the axial extent is much smaller than the 
wavelength. This implied that results of studies using notches 
could be considered to be representative for small corrosion 
patches. However, recent modeling work has indicated that 
there is in fact some sensitivity of the reflection coefficient to 
the axial extent: the reflection of L(0, 2) has been found to be 
sensitive to the axial extent of a part-through notch but has been 
found to be insensitive to the axial extent of a part-circumfer- 
ence through-wall notch. It is intended to present work on the 
influence of the axial extent of notches on the reflectivity in a 
future paper. 

2 Test Setup 
Tests were done on both 76-ram bore diameter (nominal 3- 

inch), 5.5-ram wall thickness and 152-ram bore diameter (nom- 
inal 6-inch), 7-mm wall thickness steel pipes to determine quan- 
titatively the reflection sensitivity of the L(0, 2) mode to a 
notch of constant depth as a function of circumferential extent, 
and a notch of constant circumferential extent as a function of 
its depth. The pipes which were used were 2.6 m long, a single 
ring of transducers being clamped to the pipe at one end as 
shown in Fig. 2. Notches were machined 0.9 m from the end 
remote fi'om the transducer ring using a 3.2-mm diameter slot 
drill cutter. The cutter axis was aligned to lie on a radial axis 
of the pipe, and the notches were extended by rotating the pipe 
about its own axis. During tests the pipe was rested on steel 
"vee" blocks, earlier studies (Alleyne and Cawley, 1996b, 
1997) having shown that the reflection from supports of this 
type was very small. 

The instrumentation which was used is shown in Fig. 2. 
An arbitrary function generator (LeCroy 9101) delivered the 
excitation signal to an ENI 240L power amplifier whose output 
was sent to the transducer ring, the individual transducers in 
the ring being connected in parallel. The same transducers were 
used as receivers, a diode bridge circuit (Owens, 1980) being 
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connected between the ring and the power amplifier to isolate 
the receiver amplifier from the large-amplitude excitation sig- 
nals. The received signal was amplified and transferred to a 
digital oscilloscope (LeCroy 9400) for digital capture, and then 
to a PC for processing and display. In order to improve the 
signal-to-noise ratio, 200 successive response signals were cap ~ 
tured by the digital oscilloscope and averaged. In all cases, the 
signal output by the arbitrary function generator was a 10-cycle 
70 kHz toneburst modulated by a Hanning window. The voltage 
output by the power amplifier was about 140 V peak-peak and 
the receiver amplifier gain was typically set to 20 dB. 

Experiments were conducted on four separate pipes, using 
the following notches: (a) a notch of 50 percent depth with 
varying circumferential extent in a 76-mm (nominal 3-inch) 
pipe; (b) a through-thickness notch with varying circumferen- 
tial extent in a 76-ram pipe; (c) a notch of short circumferential 
extent (11 percent) with varying depth in a 76-mm pipe; and 
(d) a notch of short circumferential extent (five percent) with 
varying depth in a 152-mm (nominal 6-inch) pipe. In each 
case the transducers remained fixed to the pipe throughout the 
experiment, including while the notch was being machined. 

3 E x p e r i m e n t a l  R e s u l t s  

Figures 3(a)  and 3(b)  show the time histories of the re- 
sponses from the 76-mm (nominal 3-inch) pipe with a 2.75- 
mm deep notch (50 percent of the wall thickness) when the 
notch extended 18 mm (7.5 percent of the circumference) and 
half way around the pipe circumference, respectively. The dura- 
tion of the test was sufficiently long to include the response of 
the pipe after the reflection of the L(0, 2) mode from the notch 
and the end of the pipe. The initial signal in Fig. 3(a)  is due 
to the response of the rudimentary diode bridge circuit to the 
excitation pulse; this has been gated out in Fig. 3(b)  where 
only the reflected signals are shown. When t < 1200 ~s the 
response is just that of the reflected L(0, 2) mode from the notch 
and from the end of the pipe; the L(0, 1 ) mode is produced on 
excitation and on reflection from the notch, but the time base 
is not sufficiently long for it to be seen. 

The reflection coefficient for the notch was obtained by divid- 
ing the amplitude of the reflection from the notch by a reference 
measurement: the reflection from the end of the pipe when the 
notch was not present. For this experimental setup, only the 
L(0, 2) and L(0, 1 ) modes can exist when there is no notch. 
The deformation shape of the L(0, 1) mode through the wall 
thickness is antisymmetric about the midwall (it consists of 
wall bending) whereas the shape of the L(0, 2) mode is sym- 
metric (axial extension). Conversion from one to the other can 
only occur at asymmetric features such as part-through notches 
and does not occur at the end of the pipe which was machined 
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Fig. 3(a) Time history of the response measured at the end of the 76- 
mm (nominal 3-inch) pipe when a notch 2.7 mm deep extended over 16 
mm (6.5 percent) of the circumference; (b) when the notch extended 
over half the circumference 

square to the axis, so the reference measurement is in fact an 
L(0, 2) signal of the same magnitude as the incident signal. 
This has also been confirmed experimentally. The reflection 
coefficients do therefore represent the division of the reflected 
L(0, 2) mode by the incident L(0, 2) mode. The division was 
carried out in the frequency domain. 

Figure 4 shows the reflection coefficient from notches half 
the wall thickness deep which extended over 5, 10, 15, 20, 25, 
30, 40, 50, 60, 70, 80, 90, and 100 percent (the symmetric case) 
around the circumference of the 76-mm (nominal 3-inch) pipe 
as a function of frequency. The results show that the amplitudes 
of the individual reflected signals are a weak function of fre- 
quency (the amplitude of the reflected signal increasing slightly 
with frequency) in the frequency range 60-85 kHz. There is a 
monotonic increase in the amplitude of the reflection coefficient 
with increasing notch extent, a notch 2.75 mm deep extending 
over the full circumference producing a reflection of about 34 
percent of the amplitude of the incident L(0, 2) mode. 
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Fig. 4 The measured reflection coefficient of the L(0, 2) mode for a half 
wall thickness deep notch in a 76-mm bore diameter (nominal 3-inch), 
5.5-mm wall thickness pipe as a function of frequency. The different 
curves correspond to different notch circumferential extents which are 
expressed as a percentage of the total pipe circumference. 
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Fig. 5 Measured amplitude of the reflection coefficient for a half wall  
thickness deep notch in a 76-mm (nominal 3-inch) pipe at 70 kHz as a 
function of the percentage circumferential extent. Finite element predic- 
tion also shown for comparison. 

Figure 5 shows the reflection coefficient of the L(0, 2) mode 
at a frequency of 70 kHz as a function of the circumferential 
extent of the notch. This shows that the amplitude of the re- 
flected signal is a roughly linear function of the circumferential 
extent of the notch. Figure 6 shows the corresponding result 
when the notch extended over the full pipe thickness. Again 
the reflection coefficient increases linearly with circumferential 
extent, and in this instance a notch extending over the full 
circumference (so detaching the section of pipe beyond the 
notch) gives 100 percent reflection. 

Figure 7 shows the reflection coefficient of the L(0, 2) mode 
for the notch covering 11 percent of the circumference of the 
76-mm (nominal 3-inch) pipe as a function of notch depth 
(expressed as a percentage of wall thickness). Also shown are 
the corresponding results for the 152 mm (nominal 6-inch) 
pipe. The experiments on the 152-ram pipe were on a notch 
which extended over only five percent of the circumference, 
compared with 11 percent for the notch in the 76-mm pipe. The 
results of Figs. 5 and 6 show that the reflection coefficient 
from a notch of a given depth is directly proportional to its 
circumferential extent. Therefore, in order to compare the re- 
sults of the 76-mm and 152-mm pipes, the reflection coefficients 
measured on the 152-mm pipe were multiplied by 11/5 (the 
ratio of the circumferential extents of the notches in the two 
pipes). Figure 7 shows that if this is done, the curves for the 
two pipe diameters are almost coincident, demonstrating that the 
factors affecting the reflection coefficient are the circumferential 
extent of the notch, expressed as a fraction of the total circum- 
ference, and its depth, expressed as a fraction of the wall thick- 
ness. The curves of Fig. 7 show that the reflectivity rises rapidly 
with depth when the depth is over 50 percent of the wall thick- 
ness, but that the rate of increase is modest at small depths. 

The measurement accuracy in the experimental results is not 
easy to quantify but can be discussed briefly. With 8-bit ana- 
logue to digital conversion and 200 averages, the instrumenta- 
tion error in the measurement of each received signal is expected 
to be better than on e percent and is not of concern. More sig- 
nificant is the potential for errors due to variation of the pipe 
wall thickness around the circumference (by up to ten percent) 
and variation of the strength of coupling of the transducers to 
the pipe over the duration of the experiment. The latter is an 
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Fig. 6 Curves corresponding to Fig. 5 when notch extends over ful l  wal l  
thickness. Finite element predictions also shown for comparison. 
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Fig. 7 Measured amplitude of the reflection coefficient at 70 kHz as a 
function of the notch depth on the 76-mm (nominal 3-inch) and 152-mm 
(nominal  6-inch) pipes for a notch extending over 11 percent of the 
circumference. The experimental results on the 76-ram pipe were done 
with a notch extending over 11 percent of the circumference; the notch 
in the 152-mm pipe extended over five percent of the circumference and 
the reflection coefficients shown have been scaled accordingly. Finite 
element predictions also shown for comparison. 

important consideration because the reference measurement 
which was used in the calculation of each reflection coefficient 
Could only be made at the start of the experiment, before starting 
to machine the notch. It should also be recognized that good 
results from a manual experiment involving large numbers of 
transducers and measurements relies on a great deal of experi- 
mental care, and a lot of time was spent on minimizing the 
sources of error and on checking the repeatability of measure- 
ments. It is therefore not possible to state numerical error bounds 
oil the reported results, but in the judgement of the authors the 
error is likely always to be better than ten percent and typically 
very much better (two to three percent). 

4 Predictions 

4.1 Finite Element Study. A full finite element analysis 
of the interaction of guided waves with discrete defects requires 
a three-dimensional solid model which, though possible, is com- 
putationally intensive. However, there are important cases of 
three-dimensional problems which are amenable to representa- 
tive analysis using simplified spatial domains. For example, 
Alleyne and Cawley (1992b) have studied the interaction of 
Lamb waves with defects in flat plates using plane-strain mod- 
els. These models represent sections through the plates and 
are relevant for long notches which are oriented normal to the 
direction of the incident waves, in the context of the notched 
pipes studied in this work it has been possible, using simplified 
yet accurate finite element models, to provide a clear demonstra- 
tion of the relationships between reflection coefficient and notch 
extent. All of the modeling was performed using the program 
Finel, developed at Imperial College (Hitehings, 1994). 

The relationship between the reflection coefficient and the 
circumferential extent of a through-thickness notch was studied 
using a three-dimensional membrane finite element model, illus- 
trated schematically in Fig. 8(a).  Membrane elements offer a 
very much simpler alternative to solid models, and their use in 
this circumstance can readily be justified. Around the frequency 
at which the experiments were performed, the L(0, 2) mode 
has a plateau on its dispersion curve, the velocity being very 
close to that of the So mode at very low ti'equency in a flat plate. 
Indeed, as discussed earlier, these two modes are extremely 
similar. The displacement mode shapes of L(0, 2) in a 76-mm 
(nominal 3-inch) pipe at 70 kHz are shown in Fig. 9. They 
were calculated using the same program which was used to 
calculate the dispersion curves in Fig. 1. The axial displacement 
is ahnost constant through the wall thickness and the radial 
displacement varies almost linearly through the wall thickness. 
These displacement shapes are consistent with the shapes of a 
plate acting in plane stress and responding to a membrane stress, 
behavior which is described properly by membrane finite ele- 
ments. The asymmetry of the radial displacement further indi- 

638 / Vol. 65, SEPTEMBER 1998 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Platte of . . . . .  fi . .  s mme r~otcn oe lng[l ey y _ ~ _ ~ m a n t s  

Wave i 
prescribing axial ~ I • "f.~L/--TLTt'7~ZYx ~ / 

displacements ~ ]  . .'_ ~ _ .  2 ~ _ j /  
_.,/ " - : a : ~ " ' ~  Linear 

~ /  ~ membrane e t e m ~  j 

(a) 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

t 

Axis of 
axisymmetry 

~ . . . . . t . . . /  Notch defined by 
removing elements 

Linear 
axisymmetric 
solid elements 

1 displacements 

t t t t t t  
Wave input by (b) 

prescribing axial 
displacements 

Fig. 8 Finite element spatial representation of notched pipes; (a) mem- 
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cates slight "breathing" motion in the pipe, and again this is 
adequately included in a membrane model by circumferential 
membrane action. The exclusion of bending behavior in the 
elements conveniently avoids the propagation of the unwanted 
L(0, 1 ) mode which is characterized by local bending of the 
pipe wall. Additionally the computation time is reduced because 
of the absence of rotational degrees-of-freedom at the nodes. 
This simplification does not compromise the predictions of 
mode conversion at the notch because conversion from L(0, 2) 
to L(0, 1 ) is only expected where there is geometric asymmetry 
through the wall thickness (such as at a part-through notch); it 
should not occur at a through-thickness notch. 

The model represented half of the circumferential extent of 
a 1.2-m length of pipe, assuming one plane of symmetry. A 
mesh of identically sized linear quadrilateral membrane ele- 
ments was used, with 32 elements around the 180-deg circum- 
ference of the model. The element axial length was 3.2 mm, 
corresponding to about 25 elements per wavelength, well above 
the threshold of eight elements per wavelength which the au- 
thors have found from experience to be a good limit for accurate 
modeling. Material damping is minimal in practice and was 
ignored in the model. A 5-cycle 70 kHz toneburst in a Hanning 
window was chosen for the input. The toneburst was applied 
as a sequence of prescribed displacements in the axial direction 
of the pipe, the same sequence being applied concurrently at 
all of the nodes around the circumference at one end of the pipe. 
Explicit marching in the time domain was employed, assuming a 
diagonal mass matrix. The maximum time step which satisfies 
stability for an explicit marching scheme is given by L~ C, where 
L is the element length and C is the wave speed of the fastest 
wave present (Bathe, 1982). In practice the authors have found 
a limit of 0.8 L/C to be sensible. This was satisfied here by 
choosing a constant time step of 0.4 #sec. The detection of the 

reflected waves was achieved simply by monitoring the axial 
displacements at all of the nodes around the circumference. As 
with the experiments, the summation of these signals ensured 
that the reflected L(0, 2) mode was detected and any mode- 
converted flexural modes were ignored. 

Initial tests without a notch demonstrated excellent agreement 
of the phase velocity predicted by the finite element model with 
that expected from the dispersion curve. A series of analyses 
incorporating through-thickness notches was then conducted. In 
order to satisfy the symmetry which was implied by modeling 
only half of the pipe, half of the circumferential extent of each 
notch was defined, starting from the plane of symmetry. The 
notches were introduced very simply by removing elements in 
the model, as shown in Fig. 8(a) .  Since the axial length of the 
notch was 3.2 mm, identical to the axial length of the elements, 
it was necessary only to remove one row of elements. 

In fact, as discussed earlier, it has been found that the axial 
extent of through-wall notches has negligible influence on the 
strength of the reflections, provided that the axial length is short 
compared to the wavelength. Models incorporating notches of 
zero axial length, created simply by disconnecting adjacent ele- 
ments, give almost the same results as those shown here. This 
is consistent with the findings of Owen and Fawkes (1983) that 
the manner in which the detail of a crack tip is modeled is 
unimportant in a global sense: a finite element model yields 
accurate global behaviour whether a crack is modeled using 
crack-tip elements or simply by disconnecting adjacent ele- 
ments; inaccuracy only remains in the shape of the stress field 
very close to the notch roots. Therefore it is to be expected that 
when the notch width (the axial length) is small compared to 
the notch length (the circumferential length) then the precise 
shape of the notch will have little influence on the mode re- 
flectivity. We therefore use the terms "notch" and "crack" 
synonymously here. 

As with the experimental measurements, the reflection coef- 
ficient for the notched pipe was calculated by dividing the am- 
plitude of the reflection from the notch by the amplitude of the 
reflection from the free end of the unnotched pipe. The results 
are shown in Fig. 6 for comparison with the experimental mea- 
surements. They demonstrate excellent agreement between the 
predictions and the experiments, and confirm once again a linear 
relationship between reflection coefficient and circumferential 
extent of the notch. 

A second series of finite element analyses was conducted 
using an axisymmetric model to predict the reflection coefficient 
from a part-through notch which extended over the full circum- 
ference of the pipe. The model is illustrated schematically in 
Fig. 8(b).  A mesh of identically sized linear quadrilateral axi- 
symmetric solid elements was used, with six elements through 
the wall thickness of the pipe, and an axial element length of 
1.6 mm. This model was therefore capable of predicting the 
propagation and mode conversion of any axially symmetric 
modes whose displacements are in the radial-axial plane, includ- 

\ 
Axial displacement 

Radial displacement .// 
38.0 Pipe radius (mm) 43.5 

(inside surface) (outside surface) 

Fig. 9 Predicted displacement mode shapes of L(O, 2) mode at 70 kHz 
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ing both L(0, 1 ) and L(0, 2). The L(0, 1) mode involves local 
bending of the pipe wall and is described by displacements 
which are antisymmetric about the midwaU. The excitation was 
limited to the L(0, 2) mode by applying the tone-burst equally 
at all of the nodes through the thickness at one end of the 
pipe. The solution was obtained using the same time marching 
scheme as for the membrane model, this time with a time-step 
size of 0.125 #sec. Then on reception the L(0, 2) mode was 
detected without any other mode-converted modes by summing 
the axial displacements at all of the nodes through the thickness. 
A range of depths of a circumferential notch on the outside of 
the pipe was studied, again by removing elements, and the 
reflection coefficient was calculated in the manner described 
for the membrane model. As discussed earlier, it was found that 
strength of reflection is sensitive to the axial length of the part- 
through notch: the results obtained by disconnecting adjacent 
elements differ, though not greatly, from those obtained by 
removing elements. Unlike the through-wall part-circumference 
notch, in which the axial length is much smaller than the notch 
length (the circumferential length), in this case the axial length 
is comparable to the notch length (the radial length). 

The results of the axisymmetric analysis can only be com- 
pared directly with experiment for the single case of a 50 percent 
depth notch around the full circumference of the pipe, shown 
in Fig. 5. The predicted value of 0.37 agrees reasonably well 
with the experimental point but is some eight percent higher. 
One possible reason for this is circumferential variation of the 
pipe wall thickness: since the reflection function is not linear 
with the notch depth, this would affect the strength of the reflec- 
tion even if the average thickness was correct. Another reason 
for the difference could be an error in the measurement of the 
reference signal from the end of the pipe which was taken 
before machining the notch. Unfortunately, after machining the 
notch, it was not possible to repeat the reference measurement 
and so this error could not be investigated further without re- 
peating the whole experiment. An error in the reference signal 
would have a linear influence on all of the reflection coefficients. 
Thus the experimental measurements in Fig. 5 would still lie 
on a straight line, but would all be scaled down by a constant. 

Although the finite element models could not include a notch 
which extends for only part of the circumference at the same 
time as only part of the thickness, there is a very reasonable 
argument to infer the reflection coefficients for any such cases 
from the predictions which have been reported. Since the reflec- 
tion coefficient is linear with respect to the circumferential ex- 
tent, both for a full-thickness notch and a half-thickness notch, 
it is reasonable to assume that it is linear with circumference 
for any depth of notch. The reflection coefficient for a notch of 
any depth and any circumferential extent is then found simply 
by scaling the results of the axisymmetric models according to 
the circumferential extent of the notch. Thus, taking the case 
of the experimental measurements for the part-through notch 
covering 11 percent of the circumference of a 76-mm (nominal 
3-inch) pipe, the reflection coefficients are predicted simply by 
scaling the axisymmetric values by the factor 0.11. These scaled 
results are presented in Fig. 7, together with the experimental 
measurements, showing a good match to the experimental trend 
of nonlinear variation with notch depth and reasonable quantita- 
tive agreement. It is not known why the experimental values 
are a little lower than the predictions but it seems to be due to 
a factor which affects all of the measurements. When the notch 
is completely through the wall ( 100 percent depth) the experi- 
mental reflection coefficient is about ten percent lower than 
expected both from the finite element results and from the exper- 
imental findings in Fig. 6. A possible reason for this could be 
variation of the thickness of the pipe wall around the circumfer- 
ence of the pipe. 

4.2 Fracture Mechanics Approach. In a recent publica- 
tion, Ditri (1994) presented a thorough theoretical derivation 
of reflection and transmission at a circumferential through- 

thickness crack in a pipe, based on the S-parameter technique 
due to Auld (1990). An example which he discussed in order 
to illustrate the technique used a pipe which was similar in 
proportions to the 76-ram (nominal 3-inch) pipe considered 
here, and he concluded that the reflection coefficient of L(0, 2) 
was related to the circumferential extent of the crack in a cubic 
manner. This conclusion differs markedly firom the present 
findings of a linear relationship, and it is important to explain 
it. It is also interesting to examine why the relationship should 
be found in practice to be approximately linear rather than a 
more complicated function. 

It is the belief of the authors that the technique which was 
derived by Ditri is correct in principle: if the crack-opening 
profile is known, then the method should yield the correct re- 
flections and transmissions. However, it is believed that the 
example which was discussed was erroneous because it was 
assumed incorrectly that the wavelength of the incident wave 
was long enough for the quasistatic approximation. This led to 
an inaccurate function for the crack-opening profile. There are 
two aspects to consider. 

First, the function which was presented for the crack-opening 
profile showed the maximum opening displacement to be pro- 
portional to the square of the crack length (Yoo and Pan, 1992). 
This is a stronger relationship than that for a crack in a flat plate 
(Tada et al., 1985) because it takes into account the additional 
opening of the crack due to bending of the pipe: A tensile 
load applied at a long distance from the crack causes a lateral 
movement of the whole pipe in the vicinity of the crack so that 
the line of action of the force passes through the remaining 
ligament, and thus the pipe bends near the crack even though 
the remote load is purely tensile. However, the bending of the 
pipe can only take place in combination with lateral body move- 
ment (movement of the whole pipe in the direction normal to 
its axis) near the location of the crack. Such lateral movement 
could not be significant in the case of the L(0, 2) mode under 
consideration because of the short duration and wavelength of 
the passing wave cycle. This was demonstrated by performing 
a finite element study of a flat plate, modeled using membrane 
elements, with a centrally positioned through-thickness notch. 
The so Lamb mode was excited such that it was normally inci- 
dent at the notch. The reflection of So from such notches is 
closely representative of the behaviour which is studied in the 
pipe, except that there is no possibility of bending, yet the 
reflection coefficient showed the same linear relationship as that 
which was found from the pipe models. Therefore the extent 
of any pipe bending with lateral body motion of the pipe is 
insignificant. Furthermore, the restriction of body movement at 
the test frequency is well illustrated by the severely limited 
extent of "breathing" of the pipe wall. "Breathing" is the 
radial movement of a pipe wall due to circumferential strain 
when the pipe is subjected to axial load. If the pipe was breath- 
ing freely then the circumferential stress would be zero, so 
the circumferential strain would be equal to the radial strain. 
Consequently the radial motion of the midwall of the pipe would 
be about seven times (i.e., the ratio of radius to thickness) 
larger than the change in the wall thickness. Referring to the 
mode shape for radial displacements, in Fig. 9, the displacement 
varies linearly through the wall thickness and is approximately 
zero at the outside surface. Therefore the motion of the midwall 
is only half of the change in the wall thickness. 

The second difficulty with the function for the crack-opening 
profile is that the wavelength is not long enough with respect 
to the notch circumferential length in either the present example 
of the 76-mm (nominal 3-inch) pipe or in the example presented 
by Ditri (1994). The static crack-opening profile is valid only 
for a remote stress which remains constant as the crack opens. 
In the case of the 76-mm pipe, the 70 kHz wave has a wave- 
length of about 80 mm, equal to one diameter of the pipe. The 
axial stress varies over the wavelength and only has the same 
sign in a 40-ram length, equal to the pipe radius. Clearly, there- 
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Fig. 10 Crack-opening displacement shape for a full-thickness notch 
extending over 50 percent of the circumference of a 76-mm (nominal 3- 
inch) pipe. Comparison of shape in finite element prediction with shape 
given by remote-stress fracture mechanics analysis. 

fore, the wavelength is rather short with respect to all but the 
shortest circumferential notches and the stress state cannot be 
approximated as a remote stress. 

A better approximation to the problem may be to consider it 
as if the wavelength was very much smaller than the notch 
length. Thus the majority of the wavefront which is incident at 
the notch sees the notch simply as a free surface from which it 
reflects totally. This approach is supported by predicted notch 
opening profiles which were monitored during the finite element 
analyses using the membrane models. The opening profile for 
the notch which extends over 50 percent of the circumference 
is shown in Fig. 10. The profile is of the axial opening displace- 
ments of the nodes along the notch face just at the moment 
when a peak of a wave is reflecting from the notch. Since the 
finite element model exploited symmetry about the center of 
the notch, the plotted displacements are perfectly symmetric in 
this respect. For comparison, the crack-opening profile for a 
pipe with a circumferential crack and remote static load (Ditri, 
1994; Yoo and Pan, 1992) is also plotted, showing its markedly 
different shape. The finite element profile can be seen to approx- 
imate to a constant value for most of the length of the notch, 
as would be expected for reflection from a free surface. The 
reflection amplitude of the L(0, 2) mode is given by the axially 
symmetric part of the reflected field, that is the average of the 
axial displacement around the circumference of the pipe (the 
remainder of the displacement field makes up the mode conver- 
sion to other modes). Thus the assumption of perfect reflection 
from a free surface at the notch would lead to the observed 
linear relationship between reflection coefficient and notch 
length. 

5 Conc lus ions  

A quantitative study of the reflection of the L(0, 2) mode 
from notches in pipes has been carried out. It has been shown 
that the reflection coefficient of this mode is very close to a 
linear function of the ratio of the circumferential extent of the 
notch to the pipe circumference, and is a stronger function of 
the ratio of the through thickness depth of the notch to the 
pipe wall thickness, detectability increasing rapidly as the depth 
increases beyond 50 percent of the wall thickness. Good agree- 
ment has been obtained between the results on the 76-ram bore 
diameter (nominal 3 inch), 5.5-mm wall thickness and 152-ram 
bore diameter (nominal 6-inch), 7-mm wall thickness pipes, 
indicating that the defect detectability on one pipe size may 
readily be inferred from results on other sizes• 

Good agreement between finite element predictions and the 
experimental results has been obtained, and the need for care 
in choosing crack-opening displacement functions if a fracture 

mechanics approach is to be used to predict the reflection coef- 
ficients has been discussed. 
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A Physical Explanation of the 
Destabilizing Effect of Damping 
In this paper, the destabilization due to small damping of the follower force system, 
known as Beck's problem, and of the cantilevered pipe conveying fluid system, two 
nonconservative systems, is considered. Instead of looking for a mathematical expla- 
nation, e.g., the evolution of the eigenvalues with different parameters, a more "physi- 
cal" explanation is provided. It is shown that it is of  particular interest to focus on 
the different modes of vibration and to understand how they evolve when damping 
is varied. Also, based on energy considerations, the key factors influencing stability 
are highlighted, e.g., the phase angles between the different coordinates. In the case 
of  the pipe conveying fluid, the methodology developed and insight gained help 
explain the presence of '~jumps" in the stability curves, that are known to play an 
important role in the linear and nonlinear dynamics of this system. 

/ 
/ 
i 

1 Introduction ; 
Physical systems that exhibit paradoxical behavior have al- 

ways fascinated the research community, and dissipation, or 
energy loss, which may make a stable system unstable belongs 
to that category. Phenomena involving destabilization due to 
damping have been observed for long time. For instance, fluid 
mechanicians know of Reynolds' two hypotheses, formulated 
in 1883, stating that (a) in some situations the inviscid fluid 
may be unstable 5" while the viscous one is stable, so that the 
effect of viscosity is purely stabilizing; and (b) in other situa- 
tions the invis¢id fluid may be stable while the viscous one 
unstable, indicating that viscosity is destabilizing (Drazin and 
Reid, 1981). Earlier still, in the general area of mechanics, 
Thomson and Tait (1879) showed that a statically unstable 
system which has been stabilized by gyroscopic forces could 
be destabilized by the introduction of small damping forces 
(Crandall, 1995). In aeronautics the destabilizing effect of 
damping has also been known for a long time, in relation to 
aircraft flutter, and has been Carefully studied (Done, 1963; 
Nissim, 1965). In some cases, physical explanations have been 
provided, such as the emergence of frequency coalescence due 
to damping. Nevertheless, destabilization by dissipation is suf- 
ficiently perplexing to deserve further attention (Pa'fdoussis, 
1998). 

An attempt to explain the phenomenon was made by Benja- 
min (1963) via an activation energy concept applied to a one- 
degree-of-freedom mechanical system subject to fluid flow. 
However, this concept is not acceptable for a real one-degree- 
of-freedom system and is not easily applicable to the problem 
of a cantilevered pipe conveying fluid. Gregory and 
Pa'fdoussis (1966) were among the first to demonstrate that 
damping can destabilize cantilevered pipes conveying fluid, and 
this was also discussed, in the context of Beck's problem, by 
Nemat-Nasser et al. (1966) and Bolotin and Zhinzher (1969), 
but no attempt was made to provide a physical explanation of 
the phenomenon. Recently, Seyranian (1990) and Seyranian 
and Pedersen (1995) tried to provide a mathematical explana- 
tion by looking at the asymptotic behaviour and the interaction 

L To Whom correspondence should be addressed. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Dec. 17, 1996; 
final revision, Feb. 11, 1998. Associate Technical Editor: J. T. Jenkins. 

between the eigenvalues, but again no physical insight was 
given. It is the main purpose of this paper to provide such 
insight. 

In general terms, the destabilizing effect of damping is known 
to be due to the presence of "negative energy modes" in the 
undamped system, i.e., modes that extract energy from the en- 
ergy reservoir of the system, and these modes need an energy 
sink in order to be excited; damping often plays the role of the 
sink, thus destabilizing the system. This has been described in 
terms of negative energy waves in plasma physics (Craik, 1985 ) 
and in hydrodynamics (Triantafyllou, 1992). 

For cantilevered pipes conveying fluid, Pa'fdoussis and Li 
(1993) and Pa'idoussis ( 1996, 1998 ) have noted the importance 
of the "S-shaped" discontinuities or " jumps" in the stability 
curves of flow velocity ( u ) versus mass parameter (fl) ,  showing 
that the critical values of/3 at which these discontinuities occur 
are frequently associated with, or are seperatrices for, distinctly 
different dynamical behavior. An attempt to explain these dis- 
continuities will be made here. 

The paper is divided into two parts: in the first one, a detailed 
analysis of a two-degree-of-freedom articulated system sub- 
jected to a follower force is undertaken, to explain the possible 
destabilizing effect of damping of a nonconservative system, 
and to develop a methodology easily applicable to the problem 
of a pipe conveying fluid, which is considered in the second 
part of the paper. 

2 Follower Force System 

2.1 Physical System. The system consists of two masses, 
2m and m, interconnected by massless rigid bars of length L 
(Fig. 1 (a ) ) ,  the lower one of which is subjected to a follower 
force, P. The upper bar is supported through a torsional spring 
of stiffness k and a "rotational" dashpot of damping coefficient 
cl. The two bars are interconnected through a spring of the 
same stiffness, k, and a dashpot defined by c2. Motion is in a 
horizontal plane. Introducing the nondimensional time T = 
t k ~ m L  2) and the following nondimensional parameters 

~,, = el /k.~TL~,r  ~ , ~,2 : c J  km,/GL ~ , p : P L / k ,  ( 1 )  

it can be shown that the nondimensional equation of motion is 
given by 

M { ~ }  + C { 6 }  + K{ch} = 0, 

1 IT1 + T: -3/2 
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Fig. 1 (a) Schematic of the articulated system and (b) variation of the 
critical load Per with ~2 for three values of ,y~ 

[2-1   -11 K = 1 " (2) 

Consequently, the system is completely defined by three param- 
eters: the two nondimensional damping coefficients, "/1 and 72, 
and the nondimensional follower force, p. 

2.2 Dynamic Instability. It is well known that this sys- 
tem becomes unstable through a Hopf bifurcation if the follower 
force p exceeds a critical value Pcr that depends on both Yl and 
Y2. This is due to the fact that the follower force renders the 
system nonconservative, since the direction of the force depends 
on the system response, which implies that the work done by 
p depends on the actual motion. In the absence of damping, the 
instability is due to the positive work done by the follower force 
during a cycle of oscillation. When damping is present, this 
work must be greater than the energy dissipated by the dashpots. 

The critical value Per can be obtained by performing the eigen- 
value analysis of Eq. (2), but for a two-degree-of-freedom sys- 
tem it can be found more easily via Routh's criteria; it can be 
shown that, in the presence of damping, 

4'y~ + 33y172 + 4y~ 1 
Pcr= 2(T~ + 7T172 + 63,2 ) + ~ Y,Y2. (3) 

Figure 1 (b) shows the variation of per with 72 for three values 
of yl. It can be seen that the three curves are qualitatively 
similar: with increasing Y2, P,r first increases, reaches a maxi- 
mum, and then decreases. This second, decreasing part of the 
curves illustrates the possible "destabilizing" effect of damp- 
ing, discussed in the following section. 

2.3 Effect of Damping. Since the stability behavior of 
the system is qualitatively similar for different values of Y~, it 
is possible to focus on just one to explain the effect of damping. 
Thus, considering 71 = 0.1, it is seen that increasing Y2 stabi- 
lizes the system when 72 < 0.0095, while destabilizing it for 
y2 > 0.0095; it should be mentioned that the stabilizing/destabi- 
lizing effect is not here defined vis-5-vis the critical value Pc, 
= 2 found for 72 = 0, but in a broader sense: Given a certain 
damping coefficient 3'2, if Pc,. increases when 3'2 is increased, 
the damping is said to be "stabilizing," and if it decreases, it 
is said to be "destabilizing." 

Consequently, the effect of damping for large values of y2 
does not follow the usual pattern, which is to stabilize mechani- 
cal systems by dissipating energy. To explain this paradox, it 
is important to mention that damping not only dissipates energy 
but also plays an important role in defining the system response. 
Therefore, even though the energy dissipated in the dashpot 
increases as Y2 is increased, the ability of the system to gain 
energy from the follower force may either be increased or de- 
creased by altering the modal form of the oscillation. Finally, 
to clarify why sustained oscillations are possible even if dissipa- 
tion of energy occurs, it is recalled that an "infinite" source of 
energy is available to maintain the follower force. 

To illustrate the effect of damping on the vibration form let 
us consider the two modes of vibration for a particular set 
of parameters. Figure 2(a)  shows the amplitude of the two 
articulations for the mode of vibration that is able to gain energy 
from the follower force. It can be seen that the amplitude of 4'2 
is larger than that of 4'1, and that the phase angle between the 
two is very small. Figure 2(b) shows 4'1 and 4'2 for the mode 
that is not able to extract energy from p. In this case, the phase 
angle is much larger. It will be shown that if 72 > 0.025, this 
phase angle is even larger than 7r/2, the two angles thus ap- 
pearing "out of phase." The mode displayed in Figs. 2 (a),  (c) 
that is able to extract energy from p will be referred to as the 
"unstable" mode, while that in Figs. 2(b),  (d) represents the 
"stable" one. As will be seen in the next section, in the "unsta- 
ble" mode, the configuration is such that the follower force p 
can do positive work on the system, while in the "stable" 
one, p does negative work. Furthermore, from the mode shapes 
shown in Figs. 2(c),  (d), it is obvious that the motion in the 
stable mode is dominated by the angle between the two bars, 
4'2 - 4'1, which is highly dependent on the damping coefficient 
3'2. As will be seen, this is of major importance. 

2.4 Energy Considerations. To quantify the energy dis- 
sipated by the dashpots and the work done by the follower force 
it is necessary to know the response of the system for any time 
r,  since the forces due to both dashpots and p are nonconserva- 
tive. It is well known that for a linear two-degree-of-freedom 
system, the response for any initial condition can be computed 
if the response of the system is known in the two modes of 
vibration. Consequently, it is necessary to focus on these two 
modes. To find them, Eq. (2) is first transformed into first-order 
form by introducing the generalized vector, x = { 4',, 4'2, ~1, 
~2} r such that ~ = [A]x. Calculating the eigenvalues and the 
eigenvectors of [A ] and constructing an appropriate modal ma- 
trix [P], it is possible to compute 4'j and 4'2 at any time, in 
each mode of vibration (Pai'doussis et al., 1997). 

Of particular interest is the work done by the external force 
p on the system in each mode of vibration during a time interval 
(0, ~). It can be shown that this work is 

W(~) = p~bl sin (4'1 - 4'2)dr. (4) 

Similarly, the energy dissipated by the two dashpots can be 
shown to be 

J o u r n a l  of  A p p l i e d  M e c h a n i c s  S E P T E M B E R  1998,  Vol. 65  / 6 4 3  

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m 0 , 1 0  c- 
o 

0.05 

0.00 g 
- 0 . 0 5  

cL 
E -0 ,10  

0 

''(o')'''''/~Q''''''' 

2 4 6 8 10 12 

0.10 
g 

0.05 

0.00 
-o 

- 0 . 0 5  
cu 
E -0 ,10  < 

0 

. ' ' ' I ' ' ~ I ~ ' ' i ' ' ' I ' ' ' l ' ' ' - 

I ,  , ,  I , , i I , I  , I  I L , l ,  , , 
2 4 6 8 10 12 

Time, r 

(d) 

Fig. 2 M o d e  c o n t e n t  o f  v i b r a t i o n  fo r  I'1 = 0.1 and ya = 0.03: (a) f i r s t  m o d e ,  a b l e  t o  

e x t r a c t  e n e r g y ;  ( b )  s e c o n d  m o d e  o f  v i b r a t i o n  ( ~ 1  h a s  b e e n  m u l t i p l i e d  b y  10); (c),  
(d) s h a p e s  r e p r e s e n t i n g  t h e  s y s t e m  in (a) and (b), r e s p e c t i v e l y  

5 D(T) = [ ~ l &  2 4- ~ 2 ( & 2  - & l ) 2 ]  d T .  ( 5 )  

Then, the net energy gained by the system during a period T 
of the not necessarily neutrally stable oscillation is 

~xE = W ( T )  - D ( T ) .  (6) 

If ~xE > 0 in one of the modes, the system gains energy in 
each cycle of oscillation and is unstable. The variation of ~E ,  
normalized with respect to the initial energy of the system, is 
shown in Fig. 3 for p = 2, as a function of Y2. It is seen that 
~xE > 0 for Y2 > 0.025, in agreement with the critical p, p,.r, 
in Fig. l (b). 

To gain a better understanding of the stability behavior, let 
us consider the system at its neutrally stable state, when ~ E  
= 0, and both 6~ and 62 are purely  periodic: 

61 = sin (wr) ,  62 - 6, = A sin (wr - 0). (7) 

A represents the "amplitude ratio" between 6~ and 62 - 6t 
and is assumed to be positive, and 0 represents the phase differ- 
ence. The reason for utilizing 62 - 6~ is that, in view of Eqs. 
(4) and (5), it is a "natural" choice, resulting in simpler analy- 
sis. In order to obtain an analytical expression for W ( T ) ,  it is 
further assumed that 6~ and (J~2 a r e  small, so that sin (6~ - 62) 
~- 6~ - 62. This is possible since the problem is linear, so 

that only the relative amplitude is of importance. With this 
assumption, one obtains AE = pA sin 0 - ~ ( %  + A272) = O. 
Since the system is neutrally stable, necessarily p = Pc,- so that 

Pc,. sin 0 = ~ ( %  + A2T2)/A.  (8) 

Therefore, the right-hand side of Eq. (8) is positive, and it is 
clear that the existence of a posit ive Pc,. is directly related to the 
sign of sin 0. However, the actual value of Per is related to 
different factors: the frequency of oscillation, ~, the phase 
angle, 0, the amplitude ratio, A, and the two damping coeffi- 
cients y, and '~2. Therefore, for a constant Y~, it is necessary 
to know the variation of these parameters with Y2 in order 
to understand how Per varies with Y2. Here, because of space 
limitations, only the evolution of the amplitude is shown; the 
variation of other key factors may be found in Pa'fdoussis et al. 
(1997). It can be shown that, for the mode that becomes unsta- 
ble, the phase angle is very small (0 -~ 0.02 deg) and varies 
almost linearly with Y2. On the other hand, the variations of 
the amplitude ratio and of ~ are not linear, but have parabolic 
shapes. This is also the case for the phase angle in the stable 
mode, which varies nonlinearly from 0.5 to 2.2 rad. Conse- 
quently, it is difficult to know a priori how Pc,- varies with Y2. 

It is particularly interesting to examine the evolution of the 
right-hand side (rhs) of Eq. (8) with varying 0, since both terms 
play an important role in the stabilizing/destabilizing effect of 
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3'2. It can be shown (Pa'/doussis et al., 1997) that when ")/2 is 
small, rhs increases fast while the increase in 0 is slow, implying 
that Per increases; for larger values of 3'2 (Y2 > 0.0095), the 
increase of rhs becomes much slower, while the increase of 0 
remains the same, implying a decrease of p,.. 

It thus becomes clear that the phase angle 0 plays an im- 
portant role in the stability of the system, by having a large 
effect (i) on the value ofp~ and (ii) on its very existence. For 
example, despite the fact that the two modes of vibration for 
3'2 = 0.0095 have the same frequency and the same generalized- 
coordinate amplitude ratio A, being therefore very similar, one 
of them is able to extract energy from p while the other one is 
not, simply because of the difference in phase angle. On the 
other hand, it is well known that damping has a big influence 
on the phase angle, which explains why it has such an important 
effect on stability. 

For later comparison with the pipe problem, it is of interest 
to consider the form of Eq. (4) for small angles, when the 
integrand may be written as p(~blcb~ - (old~2)dr. The first term 
is a complete differential and, for purely periodic motions, it 
vanishes when integrated over (0, T); hence, 

L r W ( T )  ~ - p~h2~ ,d~ - ,  (9) 

correct to third order in small angles. This shows that it is 
the lateral component of the follower force which does the 
nonconservative work. 

Finally, the stabilizing/destabilizing effect of y2 can also be 
explained by looking at the relative amplitudes of motion of 
the two masses in the two modes of vibration, normalized with 
respect to the maximum amplitude of q52, B = (q52 - ~b,)/q52. 
As shown in Fig. 4, when 0 <- 3'2 --- 0.0095, B is greater in the 
unstable mode than in the stable one. But by its nature, T2 has 
a major effect when B is large, thus tending to reduce B. There- 
fore, in this region, by increasing T2 and keeping p constant, 
the unstable mode is reduced or suppressed, which means that 
")/2 has a s tabi l i z ing  effect. When y2 > 0.0095, B is larger in 
the stable mode, so that an increase of damping means a sup- 
pression of the s table  mode, therefore leading to the opposite 
conclusion: More damping is destabi l iz ing.  Consequently, con- 
sideration of the relative amplitudes in the different modes is 
particularly useful in explaining the effects of damping on sta- 
bility. 

2.5 Conclusion. Despite the simplicity of the physical 
system, its stability characteristics proved to be rather complex; 
yet, the simplicity of the mathematical model allowed us to 
develop a general methodology for showing and explaining why 
damping can actually des tabi l i ze  a stable system. It will be seen 

in the next section how this methodology can be used to exam- 
ine the stability behavior of a pipe conveying fluid. 

3 Pipe Conveying Fluid 

3.1 Physical System. The system under consideration 
consists of a tubular cantilever of length L, mass per unit length 
m, flexural rigidity El ,  and coefficient of Kelvin-Voigt damping 
a, conveying fluid of mass M per unit length, flowing in the 
pipe with axial velocity U. The pipe is clamped at its upstream 
end and free at the other, and it is assumed to oscillate in a 
horizontal plane. 

For the linear system, the nondimensional equation of motion 
takes the particularly simple form 

L(O) ~ c~ .... + ~7"" + u2r7 " + 2 u ~ ¢ 1 '  + ~ = 0, (10) 

where ( )" = 0( )/0~- and ( ) '  = 0( )/04; rl(~, T) repre- 
sents the lateral deflection of the pipe, u the nondimensional 
flow velocity, fl a mass parameter, and c~ the coefficient of 
viscoelastic dissipation, all nondimensional, as defined below: 

= x / L ,  r 1 = y / L ,  u = ( M ] E I ) I / 2 U L ,  

\ET / F '  " L 

M - - -  . (11) 
m + M  

Physically, in order of appearance, the terms in (10) are related 
to dissipation, flexural restoring forces, "centrifugal" or fol- 
lower compressive forces proportional to u 2 ( M U 2 ( O 2 y / O x  2) 
in dimensional terms), Coriolis effects ( M U ( O 2 y / O x O t )  in di- 
mensional terms), and inertia. 

If there is no damping, the critical flow velocity can be ob- 
tained directly from the partial differential equation, but tbr 
convenience, the infinite-dimensional model is discretized by 
Galerkin's technique, with the cantilever beam eigenfunctions, 
4r ( ( ) ,  being used as a suitable set of base functions, and q,.(7-) 
representing the corresponding generalized coordinates; thus, 
?)(~,  7") = ~ = l  ~ b r ( ~ ) q , - ( 7 " ) ,  where N represents the number of 
modes used. Introducing { x } = { q, /1 } r of dimension 2N, 
Eq. (10) can be transformed into a set of first-order ordinary 
differential equations, 

0 [i] ] 
= [ A ] x  = - [ K ]  - [ C ]  x ,  ( 12 )  

t~. 1 . 0  

I 
~ 0 . 9  
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where [•], [K], and [C] are, respectively, the N × N identity, 
stiffness, and damping matrices. The stability of the system is 
determined by looking at the eigenvalues of [A]. 

3.2 Dynamic Instability. As the follower force system, 
the cantilevered pipe conveying fluid is a nonconservative sys- 
tem that loses stability through a Hopf bifurcation if the flow 
velocity exceeds a critical value, U~r (Benjamin, 1961; Gregory 
and Pa'fdoussis, 1996). This instability is characterized by a 
pair of complex conjugate eigenvalues with a zero real part. 
The physical similarity to the follower force system is that the 
emerging jet at the free end of the cantilever gives rise to a 
follower-type reaction of magnitude MU z, equivalent to P in 
Fig. 1 (a) .  On the other hand, the pipe system is also subject 
to Coriolis-related damping. The instability occurs when the 
work done by the former overcomes that absorbed by both 
Coriolis and viscoelastic damping. 

Typical stability boundaries representing the critical flow ve- 
locity as a function of the mass parameter/3 are shown in Fig. 
5 for different values of damping and N = 10, which is sufficient 
to represent adequately the original system (Pa'idoussis, 1970). 
From this figure, two interesting remarks may be made. 

Remark 1: Comparing the stability boundaries for a = 0 
and ce * 0, it is seen that damping stabilizes the system for/3 
< 0.29, while it has a destabilizing effect for/3 > 0.29. The 
qualitative behavior of the pipe conveying fluid is thus very 
similar to the case of the follower force system described in 
Section 2. 

Remark 2: A number of " jumps" can be observed when 
ce = 0; as will be seen, they are related to the emergence of 
successive modes, in a different sense to that envisaged in a 
previous investigation (Pa'idoussis, 1970). 

3.3 Analysis. To prove that damping can be destabilizing, 
the effects of both ce and/3 are considered, giving a measure 
of dissipative and Coriolis damping effects, respectively. Fol- 
lowing the methodology developed previously, the amplitudes 
of the generalized coordinates ql, q2 . . . . .  qN in the "critical" 
or "unstable" mode are computed. The reason for not consider- 
ing the other modes is that they are highly damped, because of 
Coriolis effects. It should be mentioned that "modes"  here 
signify the modes o f  vibration as usually defined in the litera- 
ture; they are different from the zero-u "modes"  of the cantile- 
vered beam, i.e., the comparison functions, ~ ;  in fact each 
mode of vibration involves a combination of the comparison 
functions. 
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Fig. 5 Critical flow velocity ucr versus the mass parameter t ,  for differ- 
ent values of a 
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Fig. 6 Maximum amplitudes, q=, qa and q4, normalized with respect to 
ql . . . .  as a function of u and ,8, for two damping values 

Introducing again an appropriate modal matrix [P] and the 
change of variable x = [P]y  leads to N decoupled equations 
of the form 

__ O.)p 1 . Y'P'i t .~ [ O'P (YP'I I ( 1 3 )  

Yp.2 j k COp (rp I Yp.2 j 

It is clear again that each set of equations represents a one- 
degree-of-freedom oscillator, a m and wp representing, respec- 
tively, the damping and frequency in each mode of vibration. 
Concentrating only on the mode for which ap = 0, the corre- 
sponding Eq. (13) can be solved easily, yielding the time re- 
sponse in the original coordinates. Then, the maximum ampli- 
tude of each coordinate qr may be found for different parame- 
ters. Figure 6 shows the normalized amplitudes q2, q3, q4 with 
and without damping as a function of u and/3. It is seen that 
around u = 7.5, the amplitude of q2 reaches a minimum, while 
the amplitude of q3 starts to increase sharply. It is noted that 
these variations with u are smooth, but when plotted versus/3, 
as in Fig. 6(b) ,  they become much more violent, generating 
"jumps." Moreover, when/3 < /3jumv~, the third coordinate q3 
is very small, while it is significant after the jump. Therefore, 
the first conclusion drawn is that the third coordinate q3 after 
the jump becomes more and more important when u and/or/3 
increase. 

Referring to Figs. 5 and 6, it is clear that q3 has a "stabiliz- 
ing" effect, since critical velocities increase very rapidly when 
q3 starts to become effective. On the other hand, the damping 
coefficient a has a strong effect on the higher modes. This is 
reasonable from both physical and mathematical points of yiew, 
since the viscoelastic damping gives rise to a term ah~4i in the 
discretized equation, with hi representing the ith eigenvalue of 
the cantilevered beam. Consequently, because Xi increases with 
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the mode number, and because of the presence of the fourth 
power, damping tends to reduce the effect of the higher modes, 
while these higher modes become progressively mote important 
as the mass parameter/3 is increased. Therefore, a and/3 have 
opposite effects on stability and it becomes obvious that a,  
suppressing the emergence of the third coordinate q3 that stabi- 
lizes the system, can have a destabilizing effect. 

Figure 6 also provides an explanation for the presence of the 
successive jumps observed in Fig. 5: These jumps are related 
to the emergence of substantial contributions of successive gen- 
eralized coordinates qr. For example, for c~ = 0, the first jump 
around/3 = 0.3 is related to the emergence of q3:q3 is very 
small for smaller values of /3  and becomes increasingly more 
important after/3 = 0.3. To illustrate the effect of the number of 
modes, stability diagrams are constructed with a progressively 
higher number of modes in the Galerkin discretization. The 
results are shown in Fig. 7. It may be seen that, not only does 
the first jump around/3 = 0.3 not materialize with N = 2, while 
doing so with N = 3 or higher, but also N = 4 is required to 
obtain the second jump around/3 = 0.7, N = 5 to obtain the 
third one, and so on. This shows that the jumps are associated 
each time with the emergence of a new generalized coordinate. 

From the discussion in the previous paragraph about damp- 
ing, it is clear that damping tends to "k i l l "  or annihilate the 
emergence of the higher q~. In fact, by choosing appropriately 
the damping coefficient c~, it is possible to eliminate the emer- 
gence of the successive generalized coordinates, and thereby to 
suppress the different jumps, as seen in Fig. 5. It has hence 
been proved again that the jumps are related to the emergence 
of higher modes that tend to stabilize the system (similarly to 
q3 around the first jump) .  Therefore, if the damping is suffi- 
ciently high, e.g., a = 0.01, because the higher mode cannot 
contribute, this "stabilization" cannot occur, which explains 
why the critical velocity uc,. is much smaller. 

As a first conclusion, one might say that, similarly to the 
follower force system, the investigation of the relative ampli- 
tudes of the different generalized coordinates is particularly 
useful in understanding the effects of damping; this approach 
can also furnish an explanation for the appearance of the jumps. 
But again, energy considerations will help us illucidate other 
interesting characteristics. This is investigated next. 

3.4 Energy Considerations. The dimensionless work 
done on the system by the forces contributing to Eq. (10) over 
a time interval y is 

' ' ' l ' ' ' I ' ' ' l ' ' ' l ' ' '  
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Fig. 7 Stability diagram Ucr versus ,8 for Galerkin solutions with an in- 
creasing number of comparison functions, N 

L f0 ' i = w ( ~ )  = - L ( ~ ) ~ d ~ d ~  = - ( u 2 ~ #  + u ~ ) l ~ d ~  

l(Tf2 u 2 ~ ' 2 ÷ ~ 2 ) l S d ~ -  o~i?"2d~d~ -. (14) 

Henceforth, in contrast to the analysis of the follower force 
system, we shall consider the system to be in a neutrally stable 
state exclusively, when the motions are periodic. Then ~ = T, 
where T is the period, the second integral on the right-hand side 
vanishes, and A E  ~ W ( T )  = 0. Thus, we obtain 

L y/ A E  = - u2¢1(1, T)rff(1, T)dT -- u]~¢/2(1,  ~-)d~- 

£fo - c~¢]"2(~, r ) d ~ d r  = O, (15) 

or 

Wcentrif(T) - Dcoriolis(T) - Ddamp(T) = 0, (16) 

where in the definition of the last two it was recognized that 
the corresponding integrals in (15) can only be positive, i.e., 
the Coriolis and viscoelastic terms can only dissipate energy. 
The first integral, however, can be negative if ~7'(1, T) and 
¢/(1, 7-) have opposite signs over most of the period; hence, 
W¢e,,ri~(T) can be positive, and the "centrifugal" or compressive 
tangential follower-force can supply energy to the pipe. 

It is noted that Eq. (15) may also be obtained directly from 
Benjamin's  ( 1961 ) statement of Hamilton's  principle, in which 
case it is clear that Wcentr[ f - Ocoriolis is associated with the total 
nonconservative component of the reaction related to the exiting 
jet at the end of the cantilever. 

Drawing a parallel with the work in Section 2.4, Wcentri f is 
remarkably similar to the work done by p in Eq. (9) ,  where 
again it is the lateral component of u 2, u2~7 ', which does the 
nonconservative work; Dcorio]is corresponds to the work done by 
the dashpot y~ in Eq. (5) and Ddamp to that by Y2 in the same 
equation, in all cases only for the neutrally stable system. 

Now, since the motion is periodic, similarly to Eq. (7) ,  we 
take 

q,. = A,. sin (cw- -: 0,.), 1 -< r - -<N.  (17) 

Evaluating the different components in Eq. (15) using (17),  a 
complicated expression relating the frequency ~v, the relative 
amplitudes, A,, and phases, 0,., and the different parameters can 
be obtained. For example, when N = 3, it can be shown that 
Dcoriolis/(47ru~/-~) = (Ai cos 01 - A 2  c o s  02 -~- A 3 c o s  0 3 )  2 ÷ 

(Ai sin 0~ - A2 sin 02 + A3 sin 03) 2 and Wc~.tJlru 2 = 13.6A=A2 
× sin (0~ - 02) + 25.9A~A3 sin (03 - 01) + 12.3A2A3 × 
sin (02 - 03). 

From these expressions and the computation of the different 
sources of energy, the following conclusions may be drawn: (i) 
even by considering only three modes of vibration (N = 3), it 
is difficult to estimate, even qualitatively, the effects of the 
different parameters, because of the complexity of the expres- 
sions involved; (ii) by increasing a, the energy dissipated in- 
creases, which is satisfactory from a physical point of view; 
(iii) the energy dissipated by damping is much smaller than the 
energy lost by the Coriolis forces, of the order of three percent 
to ten percent approximately; (iv) as in the follower force sys- 
tem, the critical velocity Ucr is sensitive to the phase differences, 
0,., which are highly dependent on damping. In particular, the 
phase differences between q~ and qz, and q2 and q3 are important 
in the neighborhood of the first jump; as seen in Fig. 8, very 
abrupt changes in sin (01 - 02) and sin (02 - 03) occur when 
/3 -~ 0.3. 

All these points explain that the destabilizing effect is not 
related to a decrease of energy dissipated (as may erroneously 
be thought) and that damping, even if it only dissipates a small 
amount of energy, can change the ability of the system to gain 
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Fig. 8 Variation with ,8 of the relative phase angles, sin (0~ - 0,) for two 
damping values 

the pipe to extract energy from the fluid. Indeed, with the num- 
ber of modes progressively increased, corresponding jumps 
could be observed. Furthermore, if damping is chosen such that 
the normally emergent mode is suppressed, the jump itself is 
suppressed. However, the reason for multiple solutions for cer- 
tain values of/3 is not fully understood, mainly because of 
the complexity of the interaction between so many parameters. 
Nevertheless, it could be seen in the calculations that the phase 
angle plays a very important role in the emergence of the differ- 
ent coordinates; indeed, a very definite sequence occurs: prior 
to the first jump, 02 - 03 -~ 7r; prior to the second, 03 - 0 4  

Tr; and prior to the third one, it is 04 - 05 ~ ~r--which is 
probably very important, see the expressions for Woon,~f and 
Dcorio~i~. Physically, once a new coordinate emerges, the other 
ones have to adjust themselves so that the pipe can still extract 
energy. Consequently, in the neighborhood of the jumps, if 
multiple solutions exist, it is to allow smooth changes in the 
modal shape of the pipe and because different combinations of 
the different generalized coordinates are possible to give the 
proper shape. 
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energy from the fluid by modifying the system response. In 
particular, the phase differences between the different general- 
ized coordinates qr are important. 

4 C o n c l u s i o n  

In this paper, the destabilization due to small damping in 
two nonconservative systems has been considered, and some 
physical insights have been gained. 

In the case of Beck's problem, it has been shown that damp- 
ing can destabilize the system if the configuration is such that 
the addition of damping decreases or suppresses the "stable" 
mode of vibration, which was then predominant. This is particu- 
larly evident in Fig. 4 where the relative amplitudes of the two 
modes of vibration clearly show which of the two modes is the 
largest. Hence, when the amplitude of the stable mode is smaller 
than that of the unstable one, damping stabilizes the system, 
and conversely. It has also been shown that the phase between 
the two angles, and its variation with damping, are very im- 
portant in determining the stability of the system: at one point 
('72 = 0.0095), the two modes have the same amplitude and 
the same frequency, but one of the modes is able to extract 
energy from the follower force while the other one is not. 

The two-degree-of-freedom articulated system, despite its 
simplicity, displayed very interesting dynamical behavior, and 
helped develop a methodology to elucidate the dynamical be- 
havior of the pipe conveying fluid. In this case again, the relative 
amplitude of the different generalized coordinates was of major 
importance. In particular, after the first " jump" occurring 
around/3 -~ 0.3, it was shown that the third coordinate q3 grew 
abruptly, and that it had a stabilizing effect. On the contrary, 
by its nature, viscoelastic damping had the tendency to annihi- 
late the higher coordinates, so that the addition of damping had 
a destabilizing effect after the first jump. In that perspective, 
the explanation now seems rather straightforward. 

The investigation on the effect of damping also helped ex- 
plain.the presence of the ' ' jumps" in the stability diagram, Fig. 
5: each jump is associated with the emergence of a new coordi- 
nate that is necessary to maintain the "right shape" that enables 
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The Mode Conversion of a 
Guided Wave by a Part- 
Circumferential Notch in a Pipe 
A study of the reflection of mode-converted guided waves from notches in pipes has 
been carried out. Measurements were made on a 76-mm bore diameter (nominal 3- 
inch), 5.5-mm wall thickness pipe with circumferentially oriented through-thickness 
notches of various lengths. In parallel, a finite element model was used to simulate 
the experiments. The axially symmetric L(O, 2) mode was incident on the notches 
and the L( O, 2), F(1, 3), and F( 2, 3) modes were received in reflection. The results 
showed excellent agreement between the measurements and the predictions for all 
three modes. They also showed that the F( 1, 3) mode reflects as strongly as the L(O, 
2) mode when the notch length is short. Finally, it has been shown that a very simple 
analysis based on an assumed crack-opening profile may be used to make accurate 
predictions of the mode conversion. 

1 Introduct ion 
The corrosion of pipework is a major problem for the oil and 

gas and petrochemical industries. General wall-thinning and 
localized pitting corrosion can occur both fi'om the inside and 
the outside of pipe walls. A high proportion of pipes are insu- 
lated, so that even the external defects cannot be detected by 
conventional NDE techniques without the expense of removing 
the insulation. 

The authors are developing an ultrasonic guided-wave testing 
technique for the inspection of such industrial pipework. The 
testing scheme employs a pulse-echo arrangement from a single 
location on a pipe, using waves which are guided along the 
pipe wall. The presence and axial location of defects in the pipe 
wall are determined by any reflections and their arrival times. 
The scheme offers rapid inspection of long sections of pipe with 
the major advantage that the insulation need only be removed at 
the location where the transducers are attached. The original 
objective of the project was to detect any areas of corrosion 
larger than 3T × 3T in area and T/2 deep where T is the pipe 
wall thickness. The scope is for insulated pipe in the 2 -12  inch 
(51-305 mm) nominal bore diameter range and an inspection 
range of at least 15 m tYom the transducer position. 

A number of researchers have studied the use of Lamb waves 
for the detection of defects in plate structures. Of particular note, 
Worlton (1957) studied their interaction with laminar flaws in 
a plate and was thus the first to identify their potential for rapid 
inspection. More recently, and of direct relevance to the work 
reported here, Alleyne and Cawley have studied the interaction 
of Lamb waves with notches in plates. They identified the mode 
conversion behavior (1992a) and recommended criteria for 
mode selection and inspection strategies (1992b). 

Guided waves in tubular structures are similar in nature to 
Lamb waves in plates but considerably more complicated. Nev- 
ertheless a significant amount of work has previously been re- 
ported on their use t'or defect detection. An important need is the 
inspection of tubes in boilers and heat exchangers, motivating 
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research by Silk and Bainton (1979), BOttger, Schneider, and 
Weingarten (1987a, 1987b), Duncumb and Keighley (1987), 
Brook, Ngoc, and Eder (1990), Ditri et al. (1992), Rose, Cho, 
and Ditri (1994), Ditri et al. (1994), and Ditri (1994). In 
the context of larger tubular structures, Thompson, Alers, and 
Tennison (1972) and Alers (1994) have addressed the inspec- 
tion of gas pipelines using circumferential-traveling waves. 

The authors' present project has ah'eady achieved consider- 
able success. Alleyne and Cawley (1996a) have reported on 
the development of dry-coupled piezoelectric transducers for 
the excitation and detection of the guided waves. Alleyne and 
Cawley (1995) and Alleyne, Lowe, and Cawley (1998) have 
studied the reflection of the L(0,2) axially symmetric mode 
from notches in pipes. Alleyne and Cawley (1996b) measured 
reflections of the same mode from welds, flanges and pipe sup- 
ports, and demonstrated that the mode can be propagated under 
wet or dry insulation. A commercial instrument under develop- 
ment is being used in field trials on industrial pipelines. Reports 
of the findings from the field trials of defect sensitivity, and of 
the influence of welds, flanges and pipe supports have been 
made by Alleyne and Cawley (1997), Afleyne, Lowe, and Caw- 
ley (1996) and Alleyne, Cawley, Lank, and Mudge (1997). 

A key element of the inspection system is the selection and 
exploitation of a single mode. The large number of possible 
wave modes in a pipe is illustrated in the group velocity disper- 
sion curves for a 76-mm (nominal 3-inch) bore, 5.5-mm wall 
thickness pipe, in Fig. 1. The curves were calculated using a 
general purpose computer program which was developed by 
the authors (Lowe, 1995). The modes are labeled after the 
convention of Silk and Bainton (1979); they include modes 
of longitudinal ( " L " ) ,  flexural ( " F " ) ,  and torsional ( " T " )  
motion of the pipe wall, with axial symmetry or integer harmon- 
ics of variation around the circumference. The first integer of 
the integer pair" in each mode label gives the harmonic order of 
circumferential variation and the second integer is simply a 
sequential list of the modes of each type. Thus all modes whose 
first integer is zero are axially symmetric, all modes whose first 
integer is one have one wave cycle of variation of displacements 
and stresses around the circumference, and so on. The L(0,2) 
mode at approximately 70 kHz, as indicated by the dashed line 
on the figure, was identified as a particularly attractive choice. 
It is almost nondispersive--that is to say its group velocity is 
essentially constant with frequency so that there is minimal 
distortion of the wave packet over long propagation distances. 
Also, its mode shape consists predominantly of uniform axial 
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Fig. 1 Group velocity dispersion curves for 76-mm (nominal 3-inch) 
diameter, 5.5 mm wall thickness, schedule 40 steel pipe 

motion throughout the wall thickness, like the So plate mode at 
low frequency, which makes it equally sensitive to internal or 
external defects. 

Excitation is achieved by using a ring transducer which is 
made up of mechanically independent dry-coupled piezoelectric 
elements distributed around the circumference (Alleyne and 
Cawley, 1996a). Each element has a dimension of 3.2 mm in 
the circumferential direction and the elements impart a force to 
the pipe wall in the axial direction. By exciting all of the ele- 
ments equally and concuiTently, the axially symmetric L(0,2) 
mode is launched. A narrow band signal is used, consisting of 
five or ten cycles at 70 kHz modulated by a Hanning window. 
Despite the fact that the transducers are relatively narrow, the 
use of 16 elements around the circumference avoids the excita- 
tion of any of the modes within the frequency bandwidth which 
are not axially symmetric (Alleyne and Cawley, 1996a). Excita- 
tion of the remaining unwanted mode at this frequency, t h e  
L(0,1 ) mode (whose deformation shape consists of wall bend- 
ing), is minimized by transducer design. As an extra control, 
the use of more than one ring of transducers, spaced a quarter 
of a wavelength apart and with 7r/2 phase separation of their 
signals, allows the excitation of forward-traveling waves with 
insignificant excitation in the backward direction (Alleyne and 
Cawley, 1997). The same principle may also be used in recep- 
tion in order to detect waves traveling in one direction while 
suppressing the detection of waves travelling in the other direc- 
tion. 

A previous study of mode reflection at notches (Alleyne, 
Lowe, and Cawley, 1998) examined the relationship between 
the amplitude of the reflected L (0,2) mode and the circumferen- 
tial and through-thickness extents of notches. It was found that 
the reflection amplitude varied linearly with the circumferential 
extent and by a stronger than linear function with the depth of 
the notch. The results of the study supported the encouraging 
degree of sensitivity found in practice, and the reflected L (0,2) 
mode remains the principal choice for the majority of testing. 

The aim of the work presented in this paper is to study 
the strengths of mode-converted reflections, principally of the 
F ( 1,3 ) mode, when the L (0,2) mode is incident. The motivation 
of the study was to improve the detection capabilities of the 
inspection technique for some specific occurrences of defects. 
The problem arises when attempting to detect defects at loca- 
tions where there are circumferential welds. The change in ge- 
ometry at a circumferential weld is such that a large part of the 
test signal is reflected. The reflection from a defect is superim- 
posed on the reflection from the weld but is much smaller and 
therefore cannot be identified (Alleyne and Cawley, 1996b). 
The idea is to exploit the fact that the weld is approximately 
axially symmetric but a defect is almost invariably located at 
one side of the pipe and so is not axially symmetric. Therefore, 
for an incident L(0,2) mode, the weld will reflect only L(0,2) 

and L(0,1 ), but at the same time, because a defect is not axially 
symmetric, it will additionally reflect energy in nonzero-order 
mode-converted modes. Thus a measurement of reflected 
higher-order modes could be used to indicate the presence of a 
defect at a weld. 

The paper describes a fundamental study using both a labora- 
tory experiment and a finite element simulation. Although the 
motivation was for the industrial inspection task, the investiga- 
tion has broad relevance to the understanding of the scattering 
of guided waves in cylinders. The study examined the mode 
conversion behavior from an incident L(0,2) 70 kHz narrow- 
band signal to reflected F(1,3) and F(2,3) modes (indicated 
on Fig. 1 ) due to a part-circumference through-thickness notch. 
The F (1,3) and F (2,3) modes have practically the same profile 
of displacements and stresses through the wall thickness as the 
L(0,2) mode, the only difference being in the order of cyclic 
variation around the circumference. Thus, for example, the 
F(1,3) mode has the distribution of axial stress which would 
be found if the pipe was subjected to gross bending. A fourth 
mode with this through-thickness profile, F(3,3) ,  may also be 
reflected but it is extremely dispersive at this frequency and is 
therefore omitted from the study. Conversion to modes other 
than these is not expected in this study. This is because the 
other modes which can exist at this frequency all have nonuni- 
form profiles of axial displacement and stress through the wall 
thickness and therefore could only be excited if the notch geom- 
etry is nonuniform through the wall thickness, for example in 
the case of a part-through notch. In fact the reflection from part- 
through notches is of great practical interest; this study is limited 
to through-thickness notches for initial simplicity. 

Following the mode conversion study, the utility of the find- 
ings for developing a means of discriminating between fully 
circumferential and part circumferential features is demon- 
strated using a second laboratory experiment with a welded 
pipe. Finally it is shown that a very simple analysis based on 
an assumed crack-opening profile may be used to make accurate 
predictions of the mode conversion. 

2 E x p e r i m e n t a l  Se tup  

The laboratory experiments for the mode conversion study 
were performed on a 2.6-m length of nominal 3-inch Schedule 
40 steel pipe (internal diameter 76 ram, wall thickness 5.5 ram), 
illustrated in Fig. 2. The aim was to measure the reflected wave 
modes from a through-thickness circumferentially oriented 
notch for a range of lengths of the notch. Three rings of 16 
transducers each were clamped to the pipe near end " A "  as 
shown and were configured to excite the L(0,2) mode in the 
direction towards end "B."  An arbitrary function generator and 
power amplifier were used to generate a five-cycle 70 kHz 
toneburst modulated by a Hanning window, as input, and all of 
the elements on each transmitting ring were excited equally. 
The output signal from the power amplifier was approximately 
100 V peak to peak. The same rings were used for receiving, 
a diode bridge circuit protecting the receiver amplifier during 
the excitation period (Owens, 1980). The signals were ampli- 
fied and recorded independently for each of the 16 angular 

Machined circumferential notch 
Transducers (through-thickness) 

Incident signal / 
End A ~.. End B 

I 'ipe I '" I 

L: °1 t ................ 2,6 m 

Fig. 2 Arrangement of pipe and transducers for experimental measure- 
ments of wave reflections from a through-thickness part-circumferential 
notch 
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Fig. 3 Finite element spatial representation of the experiments, using a 
membrane model and exploiting the half-symmetry of the geometry 

positions around the circumference of each ring. The amplifica- 
tion gain was about 20 dB. The signals were captured on a 
digital oscilloscope, taking 200 averages for each measnrement, 
and then stored on a computer. The signals fiom the three rings 
were then processed to remove any of the L(0,1) mode and 
also the L(0,2) mode echoes fi'om end A. 

In order to obtain a reference measurement, reflections fi'om 
end B were recorded be|bre introducing any notch to the pipe. 
A through-thickness circumferential notch was then machined 
0.85 m from end B, using a 3.2-mm diameter slot drill cutter. 
For practical interest, such a notch could reasonably represent 
a circumferential crack because the axial dimension of the notch 
is unimportant when it is much shorter than both the wavelength 
and the circumferential dimension (Alleyne, Lowe, and Cawley, 
1996). Similarly, it could also represent a region of wall loss 
due to corrosion whose axial extent is much less than the 80- 
mm wavelength. Furthermore, it may be possible to infer the 
behavior due to part-through corrosion, by using the relation- 
ships which were established for reflection of the L(0,2) mode 
from part-through notches (Alleyne, Lowe, and Cawley, 1998). 
However, the reflections have been found to be sensitive to 
the axial extent of part-through notches, so that predictions for 
corrosion patches must be approximate at this stage. This issue 
will be addressed in a future paper. Measurements of the reflec- 
tions from the notch were recorded for a range of eight different 
lengths of the notch, up to a maximum length of 50 percent of 
the circumference. 

3 Fini te  E l e m e n t  M o d e l  

A full finite element analysis of the interaction of guided 
waves in a pipe with discrete defects requires a three-dimen- 
sional solid model which, though possible, is computationally 
intensive. However, it is often possible to perform meaningful 
analyses of three-dimensional problems using reduced spatial 
domains. In this case it was possible to model the pipe accu- 
rately using a three-dimensional membrane finite element 
model. The basis for such a simplification is the simple nature 
of the mode shapes of the incident L(0,2) mode and the re- 
flected F(1,3) and F(2,3) modes at 70 kHz. All three modes 
are described accurately by membrane stresses and strains of 
the pipe wall. The three-dimensional membrane element models 
these membrane stresses within its plane and also has a mass 
matrix which has coefficients relating to all three directions. It 
is therefore capable of representing both the membrane action 
and any radial motion corresponding to pipe breathing. It fol- 
lows also that the L(0,1 ) mode, which is characterized by local 
wall bending, does not propagate in the membrane model. The 
justification for the membrane modeling domain was examined 
thoroughly in the context of the previous study on the reflection 
of the L(0,2) mode (Alleyne, Lowe, and Cawley, 1998). 

The model is illustrated schematically in Fig. 3. Halt' of the 
circumferential extent of a length of pipe was modeled, assure- 

ing one plane of symmetry. The full length of the pipe was 
modeled in some cases, so that the predicted time record could 
be compared directly with the experimental measurements. 
However, in the majority of cases a shortened length of 1.2 m 
was sufficient in order to reduce the computing time whilst 
still having enough time separation between the outgoing and 
reflected signals to enable calculation of the reflection coeffi- 
cients. Comparisons between the two lengths of models con- 
firmed that the shorter models gave the same reflection coeffi- 
cients as the full-length models provided that the peak-to-peak 
amplitudes of the reflected signals were scaled to account for 
dispersion. [n fact the signal reduction due to dispersion is 
negligible for the L(0,2) and F(1,3) modes and only needs to 
be considered for the F(2,3) mode. The peak-to-peak amplitude 
of the F(2,3) mode reduces by about 31 percent in 1 m of 
propagation. Meshes of identically sized linear quadrilateral 
membrane elements were used, with 32 elements around the 
180-deg circumference of the model. The element axial length 
was 3.2 ram, corresponding to about 25 elements per wave- 
length, well above the threshold of eight elements per wave- 
length which the authors have found from experience to be a 
good limit for accurate modeling. Material damping is minimal 
in practice and was ignored in the model. 

A five-cycle 70 kHz toneburst in a Hanning window was 
chosen for the input, thus matching the experimental signal. 
The toneburst was applied as a sequence of prescribed displace- 
ments in the axial direction of the pipe, the same sequence 
being applied concurrently at all of the nodes around the circum- 
ference at one end of the pipe. Explicit marching was employed 
in the time domain, assuming a diagonal mass matrix. The 
maximum time-step which satisfies stability for an explicit 
marching scheme is given by L/C, where L is the element 
length and C is the wave speed of the fastest wave present 
(Bathe, 1982). In practice the authors have found a limit of 0.8 
L/C to be sensible. This was satisfied here by choosing a con- 
stant time-step of 0.4 ~,sec. 

The detection of the reflected waves was achieved simply by 
monitoring the axial displacements at a ring of nodes around 
the circumference, as indicated. For direct comparison of the 
predicted time domain records with the measurements, the dis- 
tance between the monitoring nodes and the notch in the full- 
length analyses was 1.19 m. This matches the distance between 
the transducers and the notch in the experiment (Fig. 2). Also, 
the distance between the notch and the remote end of the pipe 
was 0.85 m, again matching the experimental dimension. Thus 
the finite element time-domain results which are presented here 
can be compared directly with the measurements, provided that 
the time for the finite element results is taken to start at the 
moment the incident signal arrives at the monitoring nodes. 
This time shill has been incorporated in the results which are 
presented here. 

A series of analyses including through-thickness notches of 
various circumferential lengths was conducted. In order to sat- 
isfy the symmetry which was implied by modeling only half of 
the pipe, half of the circumferential extent of each notch was 
defined, starting from the plane of symmetry. The notches were 
introduced very simply by removing elements in the model, as 
shown in the figure. Since the axial length of the notch was 3.2 
mm, identical to the axial length of the elements, it was neces- 
sary only to remove one row of elements. In fact, earlier work 
(Alleyne, Lowe, and Cawley, 1998) has shown that the reflec- 
tion coefficient of the L(0,2) mode is not influenced signifi- 
cantly if a through-thickness notch is modeled simply by discon- 
necting adjacent elements, thereby creating a notch of zero axial 
length, rather than by removing the row of elements (but this 
is not the case for a part-through notch, when the reflection 
coefficient is sensitive to the axial length). Further comparison 
in the present work showed that this is still true when consider- 
ing the mode converted reflections. 
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Fig, 4 Typical processed reflected signals from the experiments, shown for a 
notch which extends around one-eighth of the circumference; (a) with processing 
to extract order 0 (axisymmetricl signals; (b) with processing to extract order 1 
(one wave cycle around the circumference) signals 

4 R e s u l t s  o f  R e f l e c t i o n  S t u d y  

Some simple signal processing was necessary in order to 
determine the amplitude of each of the reflected modes. An 
identical methodology was applied to both the experimental 
and the finite element results. For the reflection of the axially 
symmetric L(0,2) mode, the 16 individual signals from the 
transducers (or 32 signals from the nodes) were simply added. 
The resulting signal was thus exactly as if the transducers were 
wired together, as reported in previous studies of L(0,2) reflec- 
tion. For the other two modes, a phase delay of NO/27r was 
added to each signal before summing them. N is the circumfer- 
ential order number and 0 is the angular distance from the 
centre of the notch. Thus a separate processing calculation was 
performed in order to extract the amplitude of each of the three 
modes from the multiple transducer (or node) records. Since 
the signals were rather narrow band, the processing could rea- 
sonably have been performed directly on the raw time records. 
However, for better accuracy, the calculations were performed 
in the frequency domain, and then inverted to give a processed 
time-domain record for each mode. 

Typical results, for the notch which extends around one- 
eighth of the circumference, are shown in Figs. 4 and 5 for 
experimental measurements and finite element predictions, re- 
spectively. Each figure shows the time record for order-0 pro- 
cessing (axisymmetric) in part (a)  and for order-1 processing 
in part (b).  The finite element results for order 0 show the 
incident signal as it passes the monitoring location (Fig. 3) 
before arriving at the notch. The incident signal does not appear 
in this way in the experimental measurements because the re- 
ceiver ring is immediately adjacent to the transmitter ring and 
is isolated by the diode bridge circuit at the time of transmission. 
Some electrical noise is present at that time but has been gated 
out from the signal. As should be expected, the finite element 
incident signal also vanishes when the order-1 processing is 
performed. The predictions clearly agree very well with the 
measurements. Both show a moderate reflection from the notch, 
with amplitude approximately the same for both order-0 and 
order-1 processing. Both also show the strong reflection from 
end B for order 0 processing and a much reduced reflection for 
order 1 processing. The slight delay of the order 1 signals with 
respect to the order 0 signals is consistent with the slower speed 
of the F(1,3) mode compared to the L(0,2) mode (Fig. 1). 

Similarly good agreement was found for the other notch sizes 
and for order-2 processing. 

To present the full set of results, a reflection coefficient was 
calculated from each processed time record. The reflection coef- 
ficient was defined as the ratio of the amplitude of the reflected 
signal to the amplitude of the L(0,2) reference signal which 
was taken from the end of the pipe before introducing the notch. 
The amplitudes were taken simply as peak-to-peak measure- 
ments in the time domain. 

The reflection coefficient results are shown in Fig. 6. Good 
agreement can be seen between the experimental measurements 
and the finite element predictions for all three modes. The re- 
flection coefficient for the L (0,2) mode is evidently rather linear 
with respect to the circumferential eXtent of the notch, exactly 
as reported previously (Alleyne and Cawley, 1995; Alleyne, 
[,owe, and Cawley, 1996, 1998). The reflection coefficients for 
the F(1,3) and F(2,3) modes approximate to the shapes of 
rectified half-sine and sine waves, respectively. The limiting 
values are intuitive: Zero reflections of F(1,3) and F(2,3) 
should be expected for no notch or for a full-circumference 
notch; maximum reflection of F ( I ,3 )  should be expected for a 
50 percent notch. It is interesting, and of great significance, to 
observe that the reflections of F(1,3) are comparable to those 
of L(0,2) for short notches. This is the most important part of 
the graph for practical testing, and it appears that there is no 
loss in sensitivity here in using F(1,3) as an alternative to 
L(0,2).  F(2,3) ,  as well as being less sensitive than F(1,3) 
throughout the range of notch size, has the disadvantage of 
being rather dispersive at this frequency (Fig. 1). F(1,3) is 
therefore the clear choice for practical exploitation. 

An alternative, though closely related methodology for ex- 
tracting the reflection strengths of the different modes would 
be to use a two-dimensional Fourier transform (Alleyne and 
Cawley, 1991 ), choosing the circumference of the pipe with its 
16 transducer signals as the spatial domain. Since the circumfer- 
ence is continuous, it would not be necessary to apply a spatial 
window. The time-domain signals would be gated to leave just 
the reflection from the notch. After performing the transform, 
the strengths of the modes would be given by the amplitudes at 
wave numbers corresponding to integer numbers of wavelengths 
around the circumference. In principle this methodology would 
reveal the strengths of conversion to all possible modes with a 
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Fig. 5 Typical processed reflected signals from the finite element predictions, 
shown for the same notch and processing as in Fig. 4. Additional early signal is 
incident wave passing monitoring location before arriving at notch. 

single calculation. However, in practice it is troublesome. A 
wide gate has to be set in order to capture the reflected modes 
which are traveling at different speeds, yet parts of the signal 
other than the reflection from the notch must be avoided. There- 
fore this approach has not been pursued. 

5 D i s c u s s i o n  

The motivation for the reflection coefficient study was the 
identification of a mode which could be used to detect part- 
circumferential defects at the same locations as axially symmet- 
ric features. The results suggest that the F(1,3) mode is a prom- 
ising choice, particularly for the key need for the detection of 
defects whose circumferential extent is short. A second experi- 
ment was theretbre performed in order to demonstrate its dis- 
crimination on a typical geometry. The second experiment was 
very similar to the first, except that the specimen consisted of 
two pipes joined end to end by a (typical) circumferential butt- 
weld. The average height of the weld profile above the pipe 
surface was 3 mm and the weld cap width was about 12 mm. 
The notch was machined at the axial location of the center of 
the weld. The specimen length and the axial distances between 
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~_~2. Experiment I 

/ L(0'2) 

9 
F(,,3) 

0 % of Circmnference 100 

Fig. 6 Measured and predicted reflection coefficients for a through- 
thickness notch in a 76-mm (nominal 3-inch) diameter, 5.5-mm wall 
thickness pipe at 70 kHz as a function of the percentage circumferential 
extent of the notch 

transducers and notch were approximately the same as those in 
the initial experiment. Reference measurements were taken be- 
fore machining the notch, then reflection measurements were 
taken for a range of notch lengths. Finite element simulations 
were conducted in parallel. 

Typical experimental results are shown in Figs. 7 and 8. All 
of the results are plotted on the same linear amplitude scale, 
for ease of comparison. 

Figure 7 shows the reflections which were measured before 
introducing the notch. Figure 7(a)  shows the signal after pro- 
cessing tot order 0; it therefore shows the axially symmetric 
component of the reflections. A strong reflection from the weld 
is evident, as should be expected because of its axial symmetry. 
Figure 7 (b) shows the signal after processing for order 1. Here 
it can be seen that there is almost no reflection from the weld, 
indicating as expected that there is very little mode conversion 
to the F(1,3) mode. However, some signal alxives later, sug- 
gesting that some order-1 energy is reflected from the end of 
the pipe. It is believed that this signal is due to differences 
between the strengths of coupling of the different transducer 
elements, introducing errors in the processing. Thus in this case 
there is "leakage" from order 0 to order 1. This leakage is 
only pronounced when (as here) the axially symmetric signal 
is strong. 

Figure 8 shows the reflections which were measured when a 
notch extending around one-eighth of the circumference of the 
pipe was cut into the weld. Again Fig. 8(a) shows the signal 
after processing for order 0 and Fig. 8 (b) shows the signal after 
processing for order 1. The reflection from the notch and weld 
in Fig. 8 (a) is similar in magnitude to that from the weld alone, 
in Fig. 7(a) ,  illustrating clearly that the order-0 mode cannot 
be used to discriminate between the two features. However, a 
clear reflection from the notch can now be seen, in part (b), 
when the order-1 processing is performed. 

The same characteristics were observed in the results for 
other short lengths of the notch (up to a quarter of the circumfer- 
ence); the results are therefore omitted here for brevity. Simi- 
larly, the finite element predictions again matched the measure- 
ments very closely and are not shown. The demonstration 
clearly shows that the measurement of F(1,3) mode-converted 
reflections is an appropriate technique for the detection of non- 
axiallysymmetric defects at locations where there are axially 
symmetric reflectors such as circumferential welds. 
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Fig. 7 Processed reflected measurements from circumferential weld without 
n o t c h ;  ( a )  with processing to extract order 0 signals; (b) with processing to extract 
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Fig. 8 Processed reflected measurements from circumferential weld with notch 
which extends around one eighth of the circumference. P a r t s  ( a )  a n d  ( b )  as in F ig .  
7, for comparison. 

In practice the measurement of mode converted signals will 
require some minor changes to the inspection instrument. How- 
ever, the signal processing is straightforward and can be per- 
formed very quickly on the portable computer which is already 
part of the instrument. 

Another issue to be tackled will be the identification of the 
angular position of the center of the defect. This has no influence 
on the existing L(0,2) measurements, but must be known for 
the extraction of the F(1,3) signals. In the experimental work 
and the finite element predictions which are reported here, the 
notch location was known; however, in general this information 
will not be available. It will be necessary to determine the 
angular location from the multichannel records, probably by 
performing the extraction of the F(1,3) for a range of angles. 
In practice the search will be aided by field experience, for 
example the likelihood of corrosion initiating at the lowest point 
on the pipe. 

Differences in the strength of coupling of the transducers 
must also be minimized. It was possible in the laboratory to 
achieve good coupling but may be more difficult in the field. 
As discussed above, the result of uneven strengths of the trans- 
ducers is that some energy is put into the F(1,3) mode when 
exciting L(0,2). This results in the detection of F(1,3) in re- 
flection from axially symmetric features. This was seen in the 
end reflection in Fig. 7 (b). Fortunately, strong leakage can only 
occur when the L(0,2) mode is reflected strongly. Thus in Fig. 
7(b) the leakage is seen in the end reflection but not in the 
reflection from the weld. 

Having completed the mode conversion experiments and fi- 
nite element predictions, a calculation was performed in order 
to discover whether the reflection coefficients could be esti- 
mated from a simple assumption of the opening profile of the 
notch. The idea for the calculation came from the observation 
(Alleyne, Lowe, and Cawley, 1998) that the axial movement 
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Fig. 9 Prediction of reflection coefficients from simple assumption of 
constant COO profile; (al COD profile, shown for a notch which extends 
around one quarter of the circumference; (b) spatial Fourier transform 
of profile, showing amplitudes of modes of circumferential order 0, 1, 2, 
respectively; (c) predicted reflection coefficients from COD profile, with 
finite element curves for comparison. 

of the face of the notch is approximately constant over the 
whole length of the notch, when the L(0,2) mode is incident and 
the frequency and geometry are as discussed here. Following the 
analysis of Ditri (1994), based on the S-parameter technique 
due to Auld (1990), the strength of conversion to each mode 
by a circumferential crack may be determined from the degree 
to which the crack-opening profile matches the stress mode 
shape of the mode. 

In this work we are concerned with modes whose mode 
shapes consist of approximately constant axial stress through 
the wall thickness, together with integer harmonic orders of 
variation around the circumference. A spatial Fourier decompo- 
sition of the axial displacements around the circumference at 
the location of the notch therefore gives the excitation strengths 
of the mode-converted waves. The simple calculation is illus- 
trated in Figs. 9(a) and (b). Figure 9(a)  shows an assumed 
crack-opening displacement profile for a notch which extends 
around a quarter of the circumference. The crack-opening dis- 
placement has unit amplitude for a quarter of the circumference, 
corresponding to the extent of the notch, then zero amplitude. 
Figure 9(b) shows the spatial Fourier transform of the profile 
for circumferential orders up to 15. The dashed lines and the 
numbers next to the Y-axis illustrate the evaluation of the 
strengths of the reflections of modes of orders 0, l, and 2. 

Reflection coefficient functions for the three modes were 
found by repeating the calculation for a range of notch lengths. 
The results are plotted in Fig. 9(c) together with the finite 

element results from Fig. 6 for comparison. For like comparison 
in the figure, the crack-opening displacement predictions for 
order 2 were multiplied by the factor 0.65. This is the factor 
by which the peak-to-peak amplitude of the F(2,3) mode was 
found to reduce, due to dispersion, between the notch and the 
monitoring location in the finite element model. There is insig- 
nificant reduction of the L(0,2) and F(1,3) modes over this 
distance. The results show good agreement between the crack- 
opening displacement and the finite element predictions, sup- 
porting the simple assumption which was made for the crack- 
opening displacement profile. The true utility of this simple 
approach for more general application will depend critically on 
knowing the range of problem parameters for which the constant 
crack-opening displacement profile is valid. It is intended to 
address this in future work. 

6 Conclusions 

A series of experiments was conducted in which an axially 
symmetric mode was incident on a through-wall machined 
notch which extended over part of the circumference of a pipe. 
The reflections of the axially symmetric mode and of the mode- 
converted nonaxiallysymmetric modes were measured as the 
circumferential extent of the notch was increased. In parallel, 
finite element simulations of all of the experiments were per- 
formed. Excellent agreement was found between the experimen- 
tal and the predicted results. In addition to the axially symmetric 
L(0,2) mode, significant reflections of the harmonic order 1 
mode F(1,3) and the harmonic order-2 mode F(2,3) were de- 
tected. The results also showed that the F(1,3) mode reflects 
as strongly as the axially symmetric L(0,2) mode when the 
notch length is short. 

The implications of the study are that mode-conversion in 
reflection from L(0,2) to F(1,3) can be used in pipeline NDE 
in order to discriminate between axially symmetric reflectors 
such as circumferential welds and any nonaxially symmetric 
defects. As a demonstration, it was shown that the presence or 
absence of a notch at the same axial location as a circumferential 
weld could be determined from the mode converted signal. 

Finally, a very simple analysis was performed to estimate the 
mode conversion behavior using an assumed opening-displace- 
ment profile of the notch. Accurate predictions were made from 
the very simple assumption that the opening displacement is 
constant for all locations along the length of the notch. This 
simple approach has broad relevance to the scattering of guided 
modes in pipes when the wavelength is of similar size or smaller 
than the notch length, and when the axial extent of the notch 
is short. 
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Experimental Study of a 
Symmetrical Plecewlse 
Base-Excited Oscillator 
This paper presents an experimental study on a base-excited piecewise linear oscilla- 
tor with symmetrical flexible constrains of high stiffness ratio (above 20). The details 
of the adopted design of the oscillator, the experimental set-up, and calibration 
procedure are briefly discussed. The regions of chaotic motion predicted theoretically 
were confirmed by the experimental results arranged into bifurcation diagrams. 
Clearance, stiffness 1Yltio, amplitude, and frequency of the external force were used as 
branching parameters. The discussion of the system dynamics is based on bifurcation 
diagrams and Lissajous curves. The investigated system tends" to be periodic for large 
clearances and chaotic for small ones. This picture is reversed for the amplitude of 
the forcing changes, where periodic motion occurred for small values and chaos 
dominated for larger forcing. The same behavior is observed for increasing frequency 
ratio where, for values below the natural frequency, the most interesting dynamics 
occurs. For the investigated parameter values, the stiffness ratio variation produces 
only periodic motion. 

1 Introduction 
In a large number of mechanical engineering applications, ex- 

cessive wear or operational conditions lead to collisions or intermit- 
tent contacts of the system components with motion restraining 
constrains such as clearances or backlashes. Nonlinear vibration 
absorbers, bearings, heat exchanges, gear boxes, percussive cut- 
ting, and impact print hammers are examples belonging into this 
category. One of the most common is a piecewise stiffness charac- 
teristic, which can be seen in many engineering applications such 
as rotating machinery, car suspension systems, and cutting pro- 
cesses, etc. The existence of these characteristics may result in 
an intermittent contact between the components; brining either 
detrimental or beneficial effects. Therefore, it is important from 
the point of view of the design and control of these systems to 
understand their complex behavior. 

Recent years have seen considerable interest in single-degree- 
of-freedom piecewise oscillators subject to periodic external 
forcing, and which have been studied intensively via methods 
of nonlinear dynamics. The subject matter initiated nearly three 
decades ago by Kobrynskii (1969), has recently grown exten- 
sively, with many theoretical studies addressing specific prob- 
lems. The investigations by Wanatabe (1978), Shaw and 
Holmes (1983), Natsiavas (1989), Nordmark (1991 ), Peterka 
and Vacik (1991), and Wiercigroch (1994a) are examples. 
Generalization of systems with discontinuities has been ap- 
proached by Wiercigroch (1994b and 1996). These studies, 
based on bifurcation analysis, supplied evidence of complex 
dynamics, including subharmonic and chaotic motion. Although 
some experimental studies on piecewise systems have been car- 
ried out by Shaw (1985), Ehrich (1992), Stenson and Nord- 
mark (1994), Blankeship and Kahraman (1995), and Gon- 
salves et al. (1995), there is a large disproportion between the 
quantity and quality of theoretical and experimental results. 
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Therefore, in order to understand a law of motion for the investi- 
gated systems, it is essential to use appropriate models. This 
can be achieved by gathering convincing experimental data sets, 
which can be used for parameter estimation purposes and for 
verification of adopted models. 

As a consequence, this paper will focus on an experimental 
study (supported by numerical simulation) of a simple discon- 
tinuous system, i.e., a piecewise linear base-excited oscillator 
undergoing nonlinear vibrations for higher stiffness ratios, 
above 20. The system responses have been scanned in a four- 
element parameter vector through a systematic construction of 
the experimental bifurcation diagrams. The obtained diagrams 
are used to discuss the system behavior and to conclude about 
the usefulness of piecewise models. 

2 Experimental Setup 
To chose an appropriate experimental model where the actual 

oscillator is capable of providing reliable data sets, an extensive 
design exercise has been carried out by considering many struc- 
turally different systems. The starting point for all designs was 
a linear system with a chosen a priori natural frequency to 
obtain values of parameters such as stiffness kl, mass or inertia, 
and viscous damping coefficient. The linear oscillator was con- 
sidered the worst case as the addition of the secondary stiffness 
in general reduces the amplitude of vibration; however, there 
is a possibility that a coexistence of super or subharmonic solu- 
tions could occur. A variety of designs using beams and coil 
springs were examined, with both translational and rotational 
motions. From all the designs, the beam-type system was se- 
lected for physical implementation due to its simplicity, the best 
flexibility in terms of parameter changes, ease of manufacturing, 
and cost effectiveness. As a consequence, the beam oscillator 
depicted in Fig. 1 was fully designed and manufactured. 

The adopted design has two discontinuities, i.e., on the basis of 
contacts with the secondary stiffnesses. The beam system (Fig. 
1 ) is comprised of the 1 kg block of mild steel which is held in 
position by two leaf springs with combined stiffness, k~. These 
springs are mounted onto a stand which is bolted onto the base 
plate. The stiffness kl can be varied from 4.2 to 40.6 kN/m by 
changing the position of the stand along the slots on the base plate. 
This enables the natural frequency of the system to be varied 
between 10 and 32 Hz. A pneumatic damper is mounted on the 
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Fig. 1 Experimental oscillator 

top bar with the other end fixed to the upper plate of the mass. 
The damper has two ball joints at the ends to compensate for 
misalignment. The secondary springs consist of two stainless steel 
beams mounted on a stand which is bolted onto the base plate. 
This enables a variation of the stiffness, k2 by varying the length 
of the beams between 45 and 100 ram. The natural frequencies 
for these cantilever beams are 240 and 1194 Hz for the minimum 
and maximum stiffness respectively. The clearance, e, can be 
varied by adjusting the screws at the ends of the beams. 

Figure 2(a)  shows a schematic where the beam-type oscilla- 
tor mounted on the dynamic system shaker together with the 
data measurement and acquisition system. A photograph of the 
beam-type system positioned on the shaker, along with the ac- 
celerometers and the eddy current probes, and other measuring 
equipment is depicted in Fig. 2(b).  

The oscillator was mounted on the dynamic system shaker. 
The base excitation of the shaker was controlled by a arbitrary 
waveform generator with a sinusoidal output. The acceleration 
of the excitation, y, was measured using an accelerometer 
attached to the shaker table. This signal was passed through a 
charge amplifier and monitored by an oscilloscope before being 
captured on the data storage system (DSS). The relative dis- 
placement of the mass, z, was measured by sensing the deflec- 
tion of the leaf spring based on the assumption of small angular 
displacements. Hence, the displacement of the mass had to be 
closely controlled by adjusting the excitation and the secondary 
stiffness. The measurement was carried out using an eddy cur- 
rent probe, mounted on the kl stand, and was passed through a 
low-pass filter to remove high-frequency noise prior to being 
captured on the DSS. The relative velocity of the mass, ~, was 
obtained by differentiating the signal tapped out of the low- 
pass filter and was also captured on the DSS. A second oscillo- 
scope and a spectrum analyser were used to view the signals 
during the experiment. Another eddy current probe was used 
to measure the displacement, q, of the k2 beam. 

3 M a t h e m a t i c a l  Mode l  

A physical model of the investigated oscillator is depicted in 
Fig. 3 (a).  A practical application of such a system could be as 

a limiter to prevent a mass from excessive displacement or a 
shaft with bearing clearances. As shown in Fig. 3 (a),  the model 
comprises a linear spring and a dashpot damper connected to 
the mass. In addition, two secondary linear springs are incorpo- 
rated with clearances, e, at the top and bottom of the mass. The 
system is subjected to a harmonic base excitation in the form 
of y = Y sin ~t.  When the amplitude of oscillations is smaller 
than the clearances, the overall stiffness is equal to kl and is 
constant. When the amplitude of oscillation exceeds the clear- 
ances, the overall stiffness increases to the higher constant value 
of kl + k2. This is only true by assuming small deflections of the 
both sets of springs; otherwise the systems should be regarded as 
piecewise nonlinear. The relationship between the restoring 
force in the spring(s) and the displacement of the mass is 
depicted in Fig. 3(b).  

The equations of motion were derived in coordinates which 
are relative to the base excitation, assuming the gravitational 
force is compensated by the initial preloading of the primary 
spring. For this system, when the mass is oscillating, three 
conditions exist and they are as follows: 

• The mass is not in contact with the secondary springs, 

m~" + c~ + k~z = m Y f ~  2 sin ~2t, for - e  < z < e. ( l a )  

• The mass is in contact with the secondary upper spring, 

m~" + c~ + k lz  + k2(z  - e)  = m Y f ~  2 sin fit, 

for z-> e. ( lb )  

• The mass is in contact with the secondary lower spring, 

m~" + c£ + klz  + k2(z  + e)  = mY~2 2 sin f~t, 

for z < - - e .  ( l c )  

Equation (1) was nondimensionalized with respect to time 
and amplitude of motion, and the following simplified form was 
obtained: 

Z "  + 2 ~ Z '  + Z + r iO(Z )  = Fo sin uT-, (2) 

where 

0, IzI < E 

0(Z) = Z - E s i g n Z ,  ]Z[ -> E' 
(3) 

Z z ~ : c = - - ,  - -  ~- = cv,,t, 
Yo 2mw,, ' 

Fo Yr2 k~ 
= - -  , O.)n .~- 

Yo 

e k2 d Z  e : - ,  ri:i- ,  ( ' ) - = - -  
Yo ' d~- 

f~ 

aJn 

4 Bi furcat ion  Ana lys i s  

Qualitative changes of dynamic behavior as a result of a change 
of one or more control parameters are named bifurcations. The 

N o m e n c l a t u r e  

c = viscous damping 
e = gap 
E = dimentionless gap 
f. = restoring force 

F0 = modulus of external force 
k, = main stiffness 
k2 = secondary stiffness 
m = mass 

t = time 
x = absolute displacement 
y = base displacement 
Y0 = reference base displacement as- 

sumed in this study to be of 1 mm 
Y = base amplitude 
z = relative displacement 

Z = dimentionless relative displacement 

/3 = stiffness ratio 
= viscous damping ratio 

wn = natural frequency 
~ = forcing frequency 
0 = dicontinuous function 
~- = dimentionless time 
u = frequency ratio 
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term was originally devised by Poincar6 to describe splitting of 
equilibrium solutions of differential equations tbr certain values 
of the control parameter. This can be conveniently demonstrated 
for an autonomous system of differential equations as follows: 

x '  = f ( x , p ) ;  x E  ~", p E!)~k (4) 

where x is the n-dimensional solution vector, p is a k-dimen- 
sional parameter vector, and prime denotes d/dT. The equilib- 
rium solutions of (4) are given by the solution of the equation 
f(x,  p) = 0. As p varies, the implicit function theorem implies 
that these equilibria are described by smooth functions of p 

away from those points, at which the Jacobian of f (x, p) has its 
eigenvalues with respect to x (see Guckenheimer and Holmes, 
1983). If the analysis is conducted when only one dimension 
of p is considered, one encounters local bifurcation, as will be 
used throughout this paper. In our case, the parameter vector 
has five dimensions, p = [E, Fo, /3, u, ~]r; however, in the 
present study a four parameter vector was investigated p* = 
[E, F0, /3, u] 7 by maintaining a constant value of the viscous 
damping, ~ = 0.02. 

The experimental bifurcation diagrams were constructed in 
a similar way to numerical ones, i.e., by varying one of the 
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Fig. 3 System with clearance; (a) physical model, (b) relationship be- 
tween displacement and restoring force 

parameters while the others are kept constant, and then project- 
ing the subsequent Poincar6 maps on either the displacement 
or the velocity axis in the domain of the branching parameter. 
Before any experimental investigation, theoretical bifurcation 
diagrams were obtained numerically by integrating Eq. (2) and 
taking a special care about the precise evaluation of the time 
values when discontinuities occur (Wiercigroch, 1994b). All 
possible precautions were undertaken to ensure the same initial 
conditions for all experimentally constructed Poincar6 sections; 
however, there is no absolute guarantee that this was achieved. 
The parameters varied include: the clearance, modulus of the 
excitation force, frequency of the excitation, and stiffness ratio. 
The natural frequency of the oscillator was held constant at 10 
Hz throughout the experiment, and a time-step of 0.001 s was 
used to sample 4096 points for each data set, taken after the 
transients had died out. Due to the large data storage required 
to cover systematically the whole range of parameters, only 
data with major changes of motion were recorded. 

5 Experimental Investigations 

5.1 Clearance Variation. The experimental data set for 
the clearance variation was collected with the clearances, e, of 
0.5, 0.7, 1.0, 1.3, 1.5, and 1.7 mm. The parameters held constant 
were [~ at 8 Hz,/3 at 40, ~ at 0.02, and yf~2 at 14.8 m/s z. The 
experimental data was processed and bifurcation diagrams were 
constructed. As clearly seen in Fig. 4(b) the system exhibits a 
broad band of amplitudes at e = 0.5 mm, which gives an indica- 
tion of possible chaotic motion. This was predicted theoreti- 
cally, as depicted in the left portion of Fig. 4(a) ,  where the 
phase plane coincides well with the experimental results. The 
broad range of amplitude obtained when e = 0.5 mm is the 
result of the irregular trajectories portrayed in the phase plane, 
so-called Lissajous curves. The disordered phase plane gave a 
broad spectrum of frequencies (Sin and Wiercigroch, 1996) 
and although additional checks are required to decide about the 
quality of motion, these three coinciding characteristics support 
the existence of chaotic motion. As the clearance, e, was in- 
creased, the behavior of the system changed, and distinct sets 
of points were obtained. These points, shown in the bifurcation 
diagram for clearance values between 0.7 to 1.7 mm (see Fig. 
4 (b)) manifest various periodic motions of the oscillator. For 
e = 0.7 ram, the trajectory creates a closed loop in the phase 
plane, and period 4 was observed. As the clearance was in- 
creased lgrther, the response remained periodic, however, the 
quality of motion changed and the system went through subcriti- 
cal bifurcations. Consequently, the system response for e = 1.3 
has period 3 motion, as depicted in the theoretical (the middle 
part of Fig. 4(a))  and experimental (the middle part of Fig. 
4(b))  diagrams. Above clearance of 1.3, only period 1 motion 
was observed, as shown in the right-hand portion of Fig. 4(b).  
However, the theoretical prediction (Fig. 4(a) )  suggests at ap- 
proximate clearance of 2 to have period 1, which differs from 
the experimental results. 

The investigation on the clearance variation shows that for 
this particular set of parameters, chaotic motion was observed 

for small clearances, and periodic motion occurred for bigger 
values. An increase in clearance allows the mass to oscillate 
with a larger amplitude, and then a passage through the change 
of stiffness becomes smoother. At small clearances, the influ- 
ence of the secondary stiffness is large, and this generates the 
rotated V shape of the bifurcation diagram. The mass can only 
travel a small distance before impacting the secondary spring 
which causes the irregular trajectories found in the phase plane. 
This is similar to the grazing effect, which was reported by 
Nordmark ( 1991 ). As the clearance is increased further, various 
periodic oscillations were obtained, which is mainly due to the 
decreased influence of the secondary stiffness, however none 
of the standard route to chaos has been recognised. 

5.2 Modulus of Force Variation. For variation of the 
modulus of the excitation force, yf~2, the experiment was con- 
ducted with ,G set to 40, ~ at 0.02, e at 0.5 mm, and with f2 at 
8 Hz. The experimental bifurcation diagram presented in Fig. 
5 (b) correlates reasonably well to its theoretical prediction de- 
picted in Fig. 5(a),  and which was prepared to cover the same 
range of the excitation force. Diagram 5(b) shows periodic 
solutions for Yf22 between 2.5 and 11.0 rn/s 2, beyond that a 
broad band of amplitudes was obtained. A study of the phase 
plane at yf~2 = 2.5 m/s 2 shows the Lissajous curve in the form 
of an ellipse, indicating a simple periodic motion. Hence, the 
mass is oscillating periodically and is not in contact with the 
secondary stiffness. By increasing yf~2 from 3.0 to 3.6 m/s 2, 
again period 1 was detected, which is visible on the bifurcation 
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diagram. When the excitation force is strong enough for the 
mass to be in contact with the secondary stiffness, more complex 
dynamics is revealed. At yf~2 at l 1 m/s 2, the number of points 
in the bifurcation diagram increased. A study of the phase plane 
shows a period 7 motion, which was not found on the theoretical 
bifurcation diagram (Fig. 5 (a)) .  This might be due to mismatch 
between theoretical and real damping in the system or coexis- 
tence of another stable solution. By increasing the modulus of 
excitation force even further, a sudden burst of a wide-band 
amplitudes occurs, which indicates the existence of chaotic mo- 
tion. The phase plane corresponding to the cross section of the 
bifurcation diagram at y~22 = 24 m/s 2 confirms such behavior. 

Comparing the system responses for different values of the 
external force amplitude, it is clear from the bifurcation diagram 
and phase planes that periodic motion dominates at low, and 
chaotic at high, values of the forcing. At low modulus of the 
excitation force, the mass is insufficiently excited to be in con- 
tact with the secondary stiffness, which results in simple, single 
harmonic oscillations. As the forcing is increased, the oscilla- 
tions rise in amplitude until the mass hits the secondary stiff- 
nesses. This produces various harmonic and subharmonic mo- 
tions. On further increasing of the forcing, the mass impacts 
onto the secondary stiffness generating chaotic motion; how- 
ever, once again one cannot draw any conclusion about the 
bifurcation scenario. 

5.3 Frequency Variation.  The parameters kept constant 
for the forcing frequency variation were fl at 20, ~ at 0.02, e 
at 0.5 mm and y[22 at 7.5 m/s 2. The experimental data was 

processed and the bifurcation diagram illustrated in Fig. 6(b) 
was constructed. The diagram corresponds reasonably well with 
the theoretical prediction shown in Fig. 6(a)  for the same fre- 
quency range as f, = 10 Hz. The system exhibits a period 7 
motion for ~ = 3 Hz, which is clearly visible on the phase 
planes (theoretical and experimental). This is followed by a 
wide band of amplitudes when f~ is between 4 and 6 Hz. At 6 
Hz, the broad band of amplitude is the result of the irregular 
trajectories portrayed in the phase planes, which indicates the 
existence of chaotic motion. Although the theoretical bifurca- 
tion diagram suggests a crisis type of onset to and from chaos, 
a specially dedicated theoretical study needs to be carried out. 
The frequency was increased further, the diagram again showing 
a set of distinct points indicating periodic motion. 

The experimental results for the frequency variation corre- 
spond reasonably well with the numerical prediction. Both 
started off with subharmonic motions at low frequencies and 
are followed by a region of chaotic oscillations. At higher fre- 
quencies, harmonic motion was obtained again in both the ex- 
perimental and numerical results. 

5.4 Stiffness Ratio Variation.  For the stiffness ratio vari- 
ation, the parameters held constant were clearance, e, at 0.5 
ram, tbrcing frequency, fL at 20 Hz, dimensionless damping 
ratio, ~, at 0.02 and modulus of the forcing, yf~2, at 7.5 m/s 2. 
The experimental bifurcation diagram shown in Fig. 7(b) is 
compared with the theoretical prediction depicted in Fig. 7 (a). 
The experimental phase plane when 13 was at 20 showed period 
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2 motion, where the theoretical results suggest period 1. How- 
ever, the differences in amplitudes and frequencies in these two 
motions are small. For /3 at 30, the response went through 
bifurcation and turned into period 5 motion, as depicted in 
the middle portion of Fig. 7(b).  This differs from the theory 
suggesting period 3 as shown in Fig. 7(a) .  On the further 
increase of/3 to 50, strictly speaking period 10 is observed (the 
right-hand portion of Fig. 7 (b)) ; however, again from practical 
stand point, it can be considered as period 5. Also, the differ- 
ences could be a result of period of doubling bifurcations when 
phase trajectories split for small variation of the parameter val- 
ues. Nevertheless, the obtained result coincides reasonably well 
with the theoretical prediction (Fig. 7 (a)).  

6 C o n c l u d i n g  R e m a r k s  

The study looked into the behavior of a single-degree-of- 
freedom sinusoidal base-excited system with symmetrically 
piecewise linear stiffness characteristics. 

A simple piecewise linear system with symmetrical flexible 
constraints was designed and manufactured to carry out a wide 
range of experimental dynamic analysis. The task undertaken 
is twofold; to provide reliable data and, ultimately, to validate 
the usefulness of widely used piecewise models. The design 
choice was made based on the criteria of accuracy representing 
the mathematical model, manufacturing simplicity, flexibility in 
terms of parameter changes, and cost effectiveness. The system 
chosen consists of a block mass supported by two leaf springs, 
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whose stiffness can be easily varied by changing their length. 
The secondary stiffnesses in the form of cantilever beams can 
be widely varied in the same way. The clearance between the 
mass and secondary springs can also be varied by adjusting the 
screws at the ends of the beams. A pneumatic damper is 
mounted to the upper surface of the mass. 

The experimental study was carried out by varying one of 
the parameters while others were kept constant. The regions of 
chaotic motion predicted theoretically were confirmed by the 
experimental results arranged into bifurcation diagrams. Clear- 
ance, stiffness ratio, amplitude, and frequency of the external 
force were used as branching parameters. The discussion of the 
system dynamics is based on bifurcation diagrams and Lissajous 
curves. The investigated system tended to be periodic for large 
clearances and chaotic for small ones. This picture is reversed 
for the amplitude of the forcing changes, where periodic motion 
occurred for small values and chaos dominated for larger forc- 
ing. The same behavior is observed for increasing frequency 
ratio, where for values below the natural frequency the most 
interesting dynamics occurs. 

The onset to and from chaos are distinct for the variation of 
the excitation force amplitude, clearance and frequency; how- 
ever, none of the typical bifurcation scenarios has been con- 
cluded. In case of the modulus of excitation force variation, the 
system starting from harmonic responses for the noncontacting 
cases goes through subharmonic motion and ends up with cha- 
otic motion as the magnitude of force was increased. This sce- 
nario is reversed for the clearance variation, where the chaotic 
nature for small clearances died out for the larger ones. By 
varying the frequency a similar picture is observed, where the 
most interesting dynamics occurs up to the natural frequency 
of the system. For the investigated parameter values, the stiff- 
ness ratio variation produces only periodic motion. 

Although it was not discussed in this paper, it is worth re- 
porting the existence of quasi-periodic motion, noticed for the 
stiffness variation. However, quasi-periodic motion was only 
obtained in the experimental results. As this type of motion 
does not occur in a single-degree-of-freedom system with only 
stiffness nonlinearities, its appearance in the experimental result 
must be due to the impact effect, which has been shown by 
Peterka and Vacik (1992), or alternatively it is possible that 
the additional springs are behaving as extra degrees-of-freedom. 

The experimental studies conducted confirmed the practical 
usefulness of piecewise models, which are widely used due to 
the simplicity and convenience of analysis. For some values of 
branching parameters the experimental results differ from the 
theoretical predictions, which can be caused by two different 
sources: coexistence of multiple stable solutions and (or) mea- 
surement errors. To eliminate the second source all necessary 
precautions need to be undertaken at the analysis and interpreta- 
tion stages to avoid possible discrepancies. Nevertheless, the 
correlation between theory and experiment obtained, is encour- 
aging and the piecewise models can be recommended for further 
investigations. 
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Transient Response of a 
Composite Plate With 
Delamination 
Transient response of a composite plate with a near-surface delamination has been 
studied in this paper. A new technique developed by the authors' to evaluate the 
Cauchy Principal Value integrals and the weakly singular integrals involved in the 
boundary integral equations has been employed and modifided to treat the corner 
points on the boundary. The time harmonic Green's functions appearing in the bound- 
ary integral equation are evaluated by combining a stiffness method and the modal 
summation technique. To circumvent the difficulties associated with the evaluation 
of hypersingular integrals for cracks, the multidomain technique is employed. The 
accuracy and efficiency of the method are checked by comparing the displacements 
in a uniaxial graphite-epoxy plate containing a delamination with results obtained 
by a hybrid method. It is shown that the presence of the delamination significantly 
alters' the surface response spectra of the plate. Results are presented in both time 
and frequency domains. The results show that the technique would be useful for 
ultrasonic nondestructive evaluation of defects in composite and anisotropic plates, 
and for studying dynamic response of such plates to impact. 

Introduction 
Wave propagation and scattering in laminated composite 

plates are of interest for ultrasonic nondestructive evaluation of 
defects, material characterization, and for dynamic response 
studies. In recent years, considerable progress has been made 
towards understanding wave propagation in composite plates 
(Datta, et al., 1988; Nayfeh and Chimenti, 1989; Zhu, et al., 
1995a). Scattering of a single incident wave mode by a crack 
has been investigated by A1-Nassar et al. (1991) and Karuna- 
sena et al. (1991), who used a hybrid technique consisting of 
finite element and modal expansion methods. Datta et al. (1992) 
investigated scattering of Lamb waves, by combining the finite 
element discretization of the near-field with boundary integral 
representation of the field outside a contour completely enclos- 
ing the crack. Bond (1990) reviewed various applicable numeri- 
cal techniques for a wave scattering problem, and recommended 
that the family of boundary methods is well suited for scattering 
by various defects. 

The primary difficulty associated with the finite element 
method for crack problems stems from the stress field singular- 
ity at the crack tips. Accurate approximation of the singular 
behavior demands refined discretization, leading to a time-con- 
suming computation. Moreover, a changing crack profile re- 
quires that the discretization be redone at each step. Working 
solely with function values on the domain boundary, a boundary 
integral formulation can circumvent the singularity and, there- 
fore, avoid these difficulties. However, since the boundary inte- 
grals involve singular kernels, the integrations have to be per- 
formed with care and the overall accuracy of the boundary 
element methods is largely dependent on the precision with 
which the various integrals are evaluated. Also, as is well 
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known, the direct boundary element method for a crack geome- 
try fails: the discretization of the whole domain boundary, in- 
cluding both crack surfaces, yields a singular system of equa- 
tions (Cruse, 1988). This follows from the observation that the 
integral equations generated by a pair of corresponding nodes 
on either side of the crack are identical. There have been many 
efforts devoted to evaluate the hypersingular integrals (Krishna- 
samy et al., 1990; Sladek et al., 1993) arising from the addi- 
tional integral equation which expresses the boundary condition 
on the crack surface. Huang and Cruse (1993) gave a brief 
review of .the techniques to treat the singular integrals involved 
in boundary integral equations. Most of the existing techniques 
are based on the explicit analytical expressions of the displace- 
ment and traction Green's functions as ~ ln  r and ~ r  i in 
two dimensions, and as ~ r  -~ and ~ r  -2 in three-dimensional 
problems, respectively, where r is the distance between the 
source and field points. It may be noted that all these methods 
are valid only for smooth boundaries. Boundaries with corners 
pose considerable difficulties. 

When the boundary element method is applied to the problem 
of wave propagation and scattering in composite laminates, the 
application of the infinite plane Green' s function, if not impossi- 
ble, is extremely difficult. It is not only because of the complex- 
ity in discretizing the interfaces between the different layers, 
but also because of the difficulty in deriving the explicit expres- 
sion of the fundamental solution for infinite anisotropic media 
in time domain or in the transformed frequency domain. 

Although the time harmonic Green's functions of layered 
media can be expressed as wave number integrals (Xu and Mal, 
1987), the numerical evaluation of these integrals is quite a 
difficult task even for isotropic media. Also, when these Green's 
functions are employed in the boundary element analysis, the 
computations, which are very time-consuming (Datta et al., 
1992), have to be repeated for any change in the location of the 
source or field point. To overcome this difficulty, the Green's 
functions in the present study are obtained through combining 
a stiffness method suggested by DonE and Huang (1985) and 
the modal summation technique. By solving the standard eigen- 
value problem once, the eigenvalues and eigenvectors are ob- 
tained and stored, the Green's functions are computed in a 
discrete form through the thickness by the modal summation. 

664 / Vol. 65, SEPTEMBER 1998 Copyright © 1998 by ASME Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



When the Green's functions for laminated composites (either 
in wave number integral form or discrete summation form) 
are used in the boundary element method, all the established 
techniques based on the analytical expressions of Green's func- 
tions to treat the singular integrals fail. Most recently, Zhu et 
al. (1996) established a new technique to evaluate the Cauchy 
Principal Value, singular and weakly singular integrals simulta- 
neously by introducing the fictitious source concept. Numerical 
results have shown the accuracy and reliability of the technique. 

In this paper, boundary element method is used to investigate 
the scattering of impact waves by delamination in a laminated 
composite plate. The new technique developed by the authors 
are employed and modifided to evaluate the Cauchy Principle 
Value and weakly singular integrals involved in the boundary 
integral equations. A double-node technique is incoporated to 
evaluate the singular integrals at corner points. In order to cir- 
cumvent the difficulties associated with the evaluation of hyper- 
singular integrals due to the presence of the delamination, the 
multidomain technique is adopted. Scattered wave fields for a 
uniaxial graphite-epoxy plate with a near-surface delamination 
have been computed and compared with the results from a 
hybrid method (Zhu, et al., 1995b). It is shown that the bound- 
ary element technique developed here is very accurate and effi- 
cient. It is demonstrated that the size and location of the delami- 
nation modifies the surface response spectra in the plate. Results 
for the time-domain response are obtained from the frequency- 
dependent response by employing inverse Fourier Transform. 
The transient response of top surface shows the effects of waves 
traveling and being scattered between the top surface and the 
crack surface. Numerical results indicate that the applications 
of this method to the ultrasonic nondestructive evaluation of 
defects and the study of dynamic response due to defects are 
very promising. 

F o r m u l a t i o n  o f  the P r o b l e m  

Consider a linearly elastic body of volume V, bounded by a 
regular surface S. The boundary integral equation in the Fourier 
transformed domain can be derived by combining the funda- 
mental point-force solution with Betti 's reciprocal theorem 
(Brebbia et al., 1984) as 

Co({)uj({) = f [G0(x, {)t i(x) - H0(x, ( )u j ( x ) ldS  

+ fGo(x,~)f,(x)dV, (1) 

where u~ and & are the displacement and traction vectors, respec- 
tively; ~ and x are, respectively, the field and source points; 
and f is the body force vector. Go(x, ~) is the displacement 
Green's function and represents the displacements at point 
due to a unit harmonic point force of the form e - j" ' '  ( j  = 
~/-~--f) applied at point x. Ho(x, ~) represents the tractions at 
point ~ due to the same load. The tensor c~j is the well-known 
discontinuity term and co the circular frequency. 

Governing Equations. Dong and Huang (1985) presented 
a numerical technique applicable to plane wave propagation 
analysis in a layered anisotropic plate. The technique starts with 
dividing each lamina into several sublayers so that the total 
number of sublayers through the thickness (2H) of the plate is 
N (Fig. 1 ). Variations of the displacements through the thick- 
ness of each sublayer are approximated by quadratic functions 
of a thickness variable. The generalized coordinates in this rep- 
resentation are the displacements at the top, middle, and bottom 
of each sublayer. 

For plane-strain condition, the relevant stress and strain com- 
ponents for the ith sublayer are related by 
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Fig. 1 Geometry of a laminated composite plate 
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(2) 

where ~u and e 0 are the stress and strain components, and D 0 
are the elements of the constitutive matrix for the sublayer. It 
is assumed here that each sublayer is orthotropic with symmetry 
axes paralled to the x and z-axes. 

By applying the principle of virtual work to each sublayer, 
a set of approximate differential equations can be established. 
The governing equation for the entire plate is obtained by sum- 
mation over all the sublayers (Karunasena et al., 1991 ) as 

F = -K~ Ox--. ~ + K2 + K3 - ¢o2M Q (3) 

where the vectors Q and F represent the nodal displacements 
and tractions applied at the interfaces of the plate, respectively. 
The sizes of Q and F are M × l, and the sizes of matrices M 
andKi  ( i =  1 , 2 , 3 )  a r e M × M ,  w h e r e M =  2 × ( 2 N +  1). 
Note that the matrices M, K~, and K3 are real and symmetric, 
whereas K2 is real and antisymmetric. 

Applying the Fourier transform with respect to x as 

= f[J(x)e-JkXdx (4) ,r( k ) 

to (3),  the governing equation in the transformed domain is 
found to be 

!~' (k2Kl + jkK2 + K3 )Q (5) 

where k is the wave number in the x direction, ~ and 0 are the 
Fourier transform of F and Q, and K* = K3 - co2M. 

Eigenvalue Problem. By setting F = 0, the eigenvalue 
equation is obtained from Eq. (5) and can be arranged in the 
form 

E i ~ ,  = k,,,~,; ,tilL, E2 = k,,,,cI,(;, (6) 

where 

[0  i ] 
El = KTtK ~ jK71K2 

0 -K71 ] 
E2 = 

K* - j K z K ?  1 
(7) 

~,R and O~l are right and left eigenvectors, respectively, and 
can be written in the partitioned forms as 
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~ R  

= (QmkmQm), ,I , , , ,  [k, , ,ORj (8) 

in which O~, and O~, have sizes 1 × M and M × 1, respectively. 

Green's Function in Frequency Domain. Following the 
modal summation technique (Liu and Achenbach, 1995) and 
making use of the orthogonality conditions of the left and right 
eigenvectors, we obtain the displacement in transformed domain 
a s  

2M ~ L ~ ~ R  kmQ,,,FQ,,, 
0 = Z (~,,, -~ k~, , ,  (9) 

m = [ 

where 

a,° : O~,t)~ + kX, OI, K , O L  (10) 

The displacement Green's functions along the thickness of 
the plate in the spatial domain due to a point load acting at 
point (xo, Zo) can be obtained by applying the inverse Fourier 
transformation to Eq. (9) as 

= __ kmQ,, ,FoQm ejk(~ Xo~dk (11 ) 
G(x;  Xo, zo) 27r m=l (kin - k)B,,, 

where Fo is a constant vector representing the amplitude of the 
) ,Qm,  Q .... Fo, and external force. It is noted that in Eq. (11 - L ~ R 

Bm are independent of k. Also, of the 2M eigenvalues half of 
these (M) correspond to the waves traveling or decaying from 
source point toward infinity while the other half correspond to 
the waves traveling towards the source (Kausel and Peek, 
1982). Applying Cauchy's Residue Theorem, choosing the M 
modes that decay with distance from the source or that propa- 
gate away fiom it, we obtain 

G(x;  x0, z0) = - Jk,,QmFoQm e&,C~_xo). (12) 
m =  I /~m 

The traction Green's functions can be obtained by using the 
constitutive equations. 

Numerical  Implementat ion  
Equation (1) cannot, in general, be solved analytically and 

therefore resort must be taken to numerical methods of solution. 
For this purpose, the boundary is represented by a series of 
elements connected to boundary nodes. With the spatial discreti- 
zation, writing Eq. ( 1 ) for each of the nodes, and allowing field 
point ~ to coincide sequentially with all the nodal points of the 
boundary, the global system of boundary element equations is 
obtained as (Brebbia et al., 1984) 

H u = G t  + b  (13) 

where matrix H contains the c U tensor and the traction kernel 
integrals, matrix G contains the displacement kernel integrals, 
and u and t are composed of the displacements and tractions 
at the nodes, respectively, b is due to the last integral in Eq. 
(1) containing the body force. 

Evaluation of the Cauchy Principal Value and Weakly 
Singular Integrals. The diagonal 2 × 2 block of the assem- 
bled H matrix contains the tensor c~j as well as the Canchy 
Principle Value of the traction kernel integrals; also, the diago- 
nal elements of the assembled G matrix contain the weakly 
singular displacement kernel integrals. An effective technique 
to evaluate these singular integrals is critical to the accuracy of 
the boundary element solution. As mentioned before, most of 
the existing methods to treat these singular integrals are based 
on the properties of full-plane/space Green's functions. They 
cannot be employed here. A new technique has been developed 
by the authors (Zhu et al., 1996). The technique starts with 

computing the displacement and traction Green's functions at 
the boundary nodes due to a point load inside the volume (arti- 
ficial source). By applying these tractions back on the boundary, 
together with the artificial point load, we establish a well-posed 
boundary value problem. Assuming that this problem is solved 
by boundary element method with identical discretization, we 
expect that the same displacements at the boundary nodes will 
be obtained as computed before (i.e., the displacement Green's 
functions) provided that the Cauchy Principal Value and weakly 
singular integrals were evaluated accurately. Now, we invert the 
procedure. We assume that the diagonal 2 × 2 block elements of 
H (hi , i ,  hi,i~.l, hi+l,i and hi+l.i+l) and diagonal elements of G 
(gl,e and g~+~,~+~ ) for each boundary node, I,  are unknown, while 
the displacements, u~, u~+~, and tractions, t~, t~+~, are known 
(with i representing x direction components, i + 1 representing 
z-direction components). Writing the boundary integral equa- 
tions for each node I, we obtain 

hi , ib l  i -r- h i , i+l lAi+l  - -  g i , i t i  

= Y~ (--hi,lul + gi.ltl) + gi,i+jti+t + bi (14)  
I ~-i,i+ 1 

h i + l , i U l  Jr" h i+l , i+ lL l i+  1 - -  g i + l , i + l f i +  t 

= Y~ (-hi+t,lul + gi+ljtl) + gi+l,iti + bi+l (15) 
l~i , i+ [ 

where ut and t~ are the known displacements and tractions 
(Green's functions) due to the artificial source, hej and gz.~ 
(1 ~ i, i + 1 ) on the right-hand side are the known elements 
of the matrices H and G in Eq. (13), and contain only regular 
integrals. From this concept, by choosing three independent 
artificial sources, we obtain sufficient number of equations to 
solve all the elements of the diagonal blocks in matrices H and 
G, Details and numerical demonstration of the accuracy and 
the reliability of the technique can be found in Zhu et al. (1996). 

Treatment of Corner Points. As is well known, the evalu- 
ation of the singular integrals around corner points of the bound- 
ary is complicated. A double nodes technique (Brebbia et al., 
1984) is incorporated here. As shown in Fig. 2, two nodes, I 
and J, with the same coordinates are set on the adjacent sides 
of a corner point. Applying Eqs. (14) and (15) to point I, and 
noticing that one more oft-diagonal 2 × 2 block of H and other 
two off-diagonal elements in G corresponding to node J contain 
singular integrals on the right-hand side of the Eqs. (14) and 
(15), we can manipulate these equations as 

bti(hi,i -4- hij) + ui+l(hi,~+~ + hij+t) - tigi,i - tjgi,i 

= ~ ( - h i  jut + g~.~tt) + g~,i+~ti+~ + gij+~tj+~ + bi (16)  
I ~ i , i + l , j , j + l  

t A i ( h i + l ,  i -}- h i + l , j )  Jr- / , l i + l ( h i + l , i +  1 Jr- h i + l , j + l )  - t i + l g i + l , i +  I 

-- tj+lgi+l.j+t = ~ (--hi+t,lUl + gi+t,ttl) + gi+l.iti 
l ~ i , i + l , j , j + l  

+ g i + l , j t j  + b i + l .  (17) 

In the above the continuity conditions 

b/i = U j ,  U i +  1 = U j +  1 ( 1 8 )  

are employed. Applying the concept of artificial source to each 
of the Eqs. (16) and (17) and choosing four artificial sources, 
we can establish the following two sets of linear equations: 

u] u~+, - t ~  - t ~ |  hi.i+, + h~j+l = r~ (19) 
u~ u2+, -t2 - d /  ~,,, | r~ 
u 4 u4+l - t4  -t4_] gij J r 4 
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where the superscript refers to the artificial source number, r~ 
represents the right-hand sides of Eqs. (16) and (17). Also, 
equations corresponding to nodes I and J in (13) are modified 
according to the continuity condition (!8)  so that the solutions 
from (19) and (20) can be applied. 

Numerical Results. The method discussed above is em- 
ployed to study the elastodynamic displacements in a uniaxial 
graphite-epoxy plate of thickness 2H ( =5.08 ram) with a delam- 
ination, as shown in Fig. 3. The vertical load is applied on the 
top surface of the plate at a distance 3.5H to the left of the 
origin. The relevant elastic constants characterizing the plate 
material are DH = 160.7 GPa, D33 = 13.92 GPa, D~3 = 6.44 
GPa, and D~5 = 7.07 GPa, and the density is 1.8 g/cm 3. Thus, 
the longitudinal (cp) and shear (Cs) wave speeds in the x-direc- 
tion are 9.45 mm//zs and 1.98 mm/#s, respectively. The normal- 
ized cutoff frequencies, ~ (=wH/c~), for the first two symmet- 
ric ($1, $2) and antisymmetric (A1, A2) modes are 2.20, 3.14, 
and 1.57, 4.4, respectively. This example is chosen purely for 
illustration. Multilayered plates (anisotropic) can be treated in 
the same manner. 

In the first step, the plate is divided into sixteen sublayers to 
compute the eigenvalues and eigenvectors. 

To overcome the difficulties associated with the evaluation 
of hypersingular integrals due to the presence of delamination, 
the multidomain technique (Blanford et al., 1981 ) is used. The 
essence of this technique is multidomain discretization and the 
use of the boundary integral equations for each domain. As 
shown in Fig. 3, the plate is divided into two domains by the 
delamination and the fictitious boundaries (dashed line). The 

0 

L,. .i .L.,, 

2H 

I 
OMAIN I 

2.52H 

2.8H 

Z ' DOMAIN II 

Fig. 3 Configuration of a composite plate with delamination 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  

displacement continuity condition and stress equilibrium condi- 
tion are employed on the fictitious boundaries. Since the ultra- 
sonic small displacements are of interest for the nondestructive 
evaluation purpose, we assume that the delamination is open. 
The stress-free condition is applied on the delamination sur- 
faces. The boundary element mesh is composed of 124 quadratic 
elements and 204 nodes. Eight crack-tip singular elements 
(Blanford et al., 1981 ) are used. 

To illustrate the reliability and efficiency of the boundary 
element method, the problem is also solved by a hybrid method 
(Zhu, et al., 1995b), wherein the plate is divided into two 
regions: interior region bounded by two vertical boundaries at 
x = - I . 4 H  and x = 1.4H, and exterior region (outside the 
interior region). The interior region is modeled by the finite 
element method while the exterior region is represented by 
the modal summation formulation. The finite element mesh is 
composed of 392 quadratic elements and 1280 nodes. 

The vertical displacements at two sections, x = - I . 4 H  and 
x = 5H, from the two methods are presented in Fig. 4 for ~'t = 
1 (the results from hybrid method are referred as the finite 
element method (FEM) in the figure). It is noted that due to a 
fairly large discretized region, the accuracy of the hybrid 
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Fig. 4 Vertical displacements at two sections for ~ = 1; (a} x = -1 .4H,  
(b) x = 5H 
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method degenerates especially in the near field. The results in 
the far field are in better agreements, as expected. The CPU 
time to solve this problem on a IBM RS6000/590 computer is 
4 minutes and 20 seconds for the boundary element method 
and 20 minutes and 55 seconds for hybrid method. 

Figures 5(a)  and (b) show the frequency response of the 
top surface in the absence and presence of the delamination, 
respectively. The peaks at the cutoff frequencies for the first 
symmetric (2.20) and the second antisymmetric (4.40) are 
clearly seen in the absence of delamination in Fig. 5 (a).  In the 
presence of delamination, two significant features are observed 
which can be exploited to determine its size and location. First, 
the peaks at the cutoff frequency for the first antisymmetric 
mode (1.57) are prominent at the points between the ends of 
the delamination. Specifically, the surface response shows two 
pronounced maxima almost symmetrical about the origin above 
the center of delamination, as illustrated in Fig. 6. It is noted 
that each peak is at the point with L/4 distance from the origin 
(L is the crack length). This feature can be used to estimate 
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Fig. 5 Response spectra of top surface; (a) without delamination, 
(b) with delamination 

TOP SURFACE RESPONSE AT E~=1.57 
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\ /  \ 

x /H  

Fig. 6 Top surface response at ~ = 1,57 

the crack length. For example, the left peak in Fig. 6 is at 
-0.63H, which gives the crack length to be 2.52H. Secondly, 
there is a pronounced peak at ~ = 0.55 (shown in Fig. 7). This 
peak is due to the resonance of the plate of finite length L above 
the delamination. This feature can be used to determine the 
depth of delamination. Since the ratio of delamination length 
(2.52H) to its depth (H/4) is large (>10) ,  we can use locally 
the plate bending theory to determine the resonance frequency. 
The natural frequency of this plate is 0.54 for simply supported 
ends. The same results were observed by Datta et al. (1992). 
Similar conclusions were drawn by Keer et al. (1984) and 
Cawley and Theodorakopoulos (1989) that the resonance fre- 
quency for a defect may be predicted by using plate theory with 
length equal to delamination length and thickness equal to its 
depth. Figure 7 shows that the dynamic response of the plate 
above the delamination has several pronounced peaks at the 
resonance frequencies of the plate. 

Transient response of the top surface, for the load acting at 
the same location as before, in the absence and presence of 
delamination is presented in Figs. 8(a) and (b), respectively. 
The time-dependence of the load was assumed as 

f (T )  = ~-2 e (7 ~o)2/2 sin (ACT) (21) 
V2~V 

where normalized time ~- = cst/H. The time delay T0 was taken 
as 3.0, and the normalized central frequency ~t, was taken as 
3.14. 

It is seen that the predominant response is due to the Rayleigh 
wave that is traveling at a speed, determined as about 1.8 ram/ 
#s in the absence of crack. In the presence of a crack, however, 
the surface response is fairly complicated. Due to the diffraction 
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Fig. 7 Displacement spectrum at the origin 
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of Rayleigh waves by the left crack-tip, both dilatational and 
shear waves are generated. These waves, together with the Ray- 
leigh waves, travel between the top surface of the plate and 
the new boundary-crack surface. Multiple reflections of waves 
between the boundary surfaces occur in this part with mode 
conversions. This is reflected in the complicated surface re- 
sponse at early time above the delamination (Fig. 8(b)) .  Figure 
9 shows the response at the point above the right end of delami- 
nation. The presence of the delamination is seen to greatly 
modify the signal. 

Conclusion 
A general boundary element method for solving elastic 

wave scattering by a delamination in a laminated composite 
plate has been presented. The Green's  function is obtained 
by combining a stiffness method and modal summation tech- 
nique. A new method developed by the authors is applied 
here to evaluate the Cauchy Principal Value integrals and 
weakly singular integrals arising in the boundary integral 
equations. The response spectrum of the top surface has been 
analyzed and it is shown that this can be used to determine 
the size and location of the delamination. Numerical results 
show that application of the technique in nondestructive eval- 
uation of defects is very promising. Since both near field and 
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far field are calculated, results for the stress distribution close 
to delamination can be obtained. The stress concentration 
due to the presence of delamination can be calculated. This 
will be discussed in a later communication. 

Acknowledgment 

The work reported here was supported in part by a grant 
from the Natural Science and Engineering Research Council of 
Canada (0GP-0007988). The first author would like to ac- 
knowledge the financial support from the University of Mani- 
toba through Graduate Fellowship awards. 

References 
A1-Nassar, Y.N., Datta, S. K., and Shah, A.H.,  1991, "Scattering of lamb 

waves by a normal rectangular strip weldment," Ultrasonics, Vol. 29, pp. 125-  
132. 

Blanford, G. E., Ingraffea, A. R., and Liggett, J. A., 1981, "Two-dimensional 
stress intensity factor computations using the boundary element method," Int. J. 
Numer. Methods Eng., Vol. 17, pp. 387-404.  

Bond, L. J., 1990, "Numerical techniques and their use to study wave propaga- 
tion and scat ter ing--A review," Proceedings of the IUTAM Symposium on Elastic 
Wave Propagation and Ultrasonic Evaluation, pp. 17-27. 

Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C., 1984, Boundat3, Element 
Techniques--Theory and Applications in Engineering, Springer-Verlag, Ber- 
lin. 

Cawley, P., and Theodorakopoulos, C., 1989, "The Membrane Resonance 
Method of Nondestructive Testing," Journal of Sound and Vibration, Vol. 130, 
No. 2, pp. 299-311.  

Cruse, T.A. ,  1988, Boundary Element analysis in Computational Fracture 
Mechanics, Kluwer Academic Publishers, Boston. 

Datta, S. K., Shah, A. H., Bratton, R. L., and Chakraborty, T., 1988, "Wave 
propagation in laminated composite plates," J. Acoust. Soc. Am., Vol. 83, pp. 
2020-2026.  

Datta, S. K., Ju, T. H., and Shah, A. H., 1992, "Scattering of an Impact Wave 
by a Crack in a Composite Plate," ASME JOURNAL OF APPLIED MECHaNiCS, Vol. 
59, pp. 596-603.  

Dong, S. B., and Huang, K. H., 1985, "Edge vibrations in laminated cbmposite 
plate," ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 433-438.  

Huang, Q., and Cruse, T. A., 1993, "Some notes on singular integral techniques 
in boundary element analysis," Int. J. Numer. Methods Eng., Vol. 36, pp. 2643-  
2659. 

Karunasena, W. M., Shah, A. H., and Datta, S. K., 199i, "Plane-strain-wave 
scattering by cracks in laminated composite plates," J. Engng. Mech., Vol. 117, 
No. 8, pp. 1738-1754. 

Kausel, E., and Peek, R., 1982, "Dynamic loads in the interior of a layered 
stratum: An explicit solution," Bull. Seism. Soc. Am., Vol. 72, pp. 1459-1482. 

Keer, L. M., Lin, W., and Achenbach, J. D., 1984, "Resonance Effects for a 
Crack Near a Free Surface," ASME JOURNAL OF APPLIED MECHANICS, Vol. 51, 
pp. 65-70.  

Krishnasamy, G., Schmelr, L.W.,  Rudolphi, T. J ,  and Rizzo, F.J., 1990, 
"Hypersingular Boundary Integral Equations: Some Applications in Acoustic and 
Elastic Wave Scattering," ASME JOURNAL OF APPLIED MECHANICS, Vol. 57, pp. 
404-414.  

Liu, G. R., and Achenbach, J. D., 1995, "Strip Element Method to Analyze 
Wave Scattering by Cracks in Anisotropic Laminated Plates," ASME JOURNAL 
OF APPLIED MECHANICS, VOI. 62, pp. 607-613.  

SEPTEMBER 1998, Vol. 65 / 669 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Nayfeh, A. H., and Chimenti, D. E., 1989, "Free Wave Propagation in Plates 
of General Anisotropic Media," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
56, pp. 881-886. 

Sladek, V., Sladek, J., and Tanaka, M., 1993, "Regularization of hypersingular 
and nearly singular integrals in the potential theory and elasticity," hit..L Numer. 
Methods Eng., Vol. 36, pp. 1609-1628. 

Xu, P.C., and Mal, A.K., 1987, "Calculation of the Green's functions 
for a layered viscoelastic solid," Bull. Seism. Soc. Am., Vol. 77, pp. 1823- 
1837. 

Zhu, J., Shah, A.H., and Datta, S.K., 1996, "The evaluations of Cauchy 
Principal Value integrals and weakly singular integrals in BEM and their applica- 
tions," lnt. J. Numer Methods Eng., Vol. 39, pp. 1017-1028. 

Zhu, J., Shah, A. H., and Datta, S. K., 1995a, "Modal representation of two- 
dimensional elastodynamic Green's functions," J. Eng. Mech., Vol. 121, pp. 26- 
36. 

Zhu, J., Datta, S. K., and Shah, A.H., 1995b, "Modal representation of 
transient dynamics of laminated plates," Composites Engineering, Vol. 5, 
pp. 1477-1487. 

ANNOUNCEMENT 

1999 ASME MECHANICS AND MATERIALS CONFERENCE 
The 1999 joint Applied Mechanics and Materials Summer Conference will be hosted by the Department of 

Engineering Science and Mechanics, Virginia Tech. on June 27-30,  1999 and held at the Virginia Polytechnic 
Institute and State University (Virginia Tech) Campus, Blacksburg, VA. 

Virginia Tech is the largest comprehensive university (with approximately 25,000 students) in the Common- 
wealth of Virginia. The College of Engineering awards nearly 1000 B.S. degrees, 450 M.S. degrees, and 135 
Ph.D. degrees every year. The Department of Engineering Science and Mechanics enrolled 101 graduate 
students in 1997-1998, awarded 21 Masters and 22 doctoral degrees in 1996-1997, and had a research 
expenditure of $4.9 million dollars in 1996-1997. The graduate program of the College of Engineering has 
been ranked 25th in the country in the 1998 U.S. News & World Report. 

SPONSORS: The Applied Mechanics Division (AMD) and the Materials Division (MD) of the American 
Society of Mechanical Engineers (ASME).  

GOALS:  The conference will bring together mechanicians and material scientists, and provide a forum 
for exchanging ideas, and promoting interaction among them. 

Scientists and researchers from all over the world are welcome to participate in the conference. All areas 
of applied mechanics and material science will be covered. Each speaker  will be allotted 20 minutes for 
presentation and discussion of the paper. 

LOCAL ORGANIZING COMMITTEE:  R.C.  Batra (Co-Chair), W. Curtin, M. Hajj, R. Heller, E. H. 
Henneke (Co-Chair), L. Librescu, A. Loos, K. Reifsnider, W. Smith, J. Smithson, S. Thangjitham, and H. 
Tieleman. 

SPECIAL SYMPOSIA: Several colleagues have kindly agreed to organize symposia. Please see the list 
at the website www.esm.vt.edu/mmconf/and click onto the symposia list. 

FORMAT FOR ABSTRACTS: Abstracts should be typed, single spaced on 8.5 x 11 inch white sheet 
with 1 inch margin on all four sides. The title ( 16 point, bold) should be followed by a single space, authors 
names (12 point, bold), their affiliations (12 point) (complete address should be included so that interested 
persons can contact the authors by mail, or e-mail), a single space and then the text of the abstract in single 
space and 12 point. It will be preferable to include line drawings rather than complex or more involved figures 
in the abstract. THE ABSTRACT MUST NOT EXCEED ONE PAGE; ELSE ONLY THE FIRST PAGE 
WILL APPEAR IN THE BOOK OF ABSTRACTS. 

TRAVEL TO BLACKSBURG: The closest airport in Roanoke is 45 miles from the Virginia Tech 
campus, and is presently served by U.S. Airways, Delta, United, and Northwest. Rental cars are available at 
the airport. A limousine service from the airport to Blacksburg and back is also available. The local organizing 
committee will make additional arrangements to facilitate travel between Roanoke Airport and Blacksburg. 
To obtain information about Blacksburg community, go to the website www.bev.net. 

IMPORTANT DATES: 

January 15, 1999 

February 28, 1999 

March 31, 1999 

May 15, 1999 

June 27-30,  1999 

Submission of Abstracts 

Acceptance/Declination Letters mailed 

Preliminary Program mailed 

Registration deadline for reduced registration fee 

Conference Program 

MAILING ADDRESS FOR ABSTRACTS: Mrs. Norma Guynn, Department of Engineering Science 
and Mechanics, Virginia Tech, Blacksburg, VA 2406t-0219; e-mail: nguynn@vt.edu; fax 540-231-4574. 

CONTACT PERSON FOR INFORMATION ON HOUSING, TRAVEL, ETC.: Ms. Wanda Hylton, 
Continuing Education, Virginia Tech, Blacksburg, VA 24060-0104, e-mail: whylton@vt.edu; Tel. 540-231- 
9617, Fax 540-231-9886. 

REGISTRATION FEE:  $295.00 if paid by May 15, 1999; $350 on site. The registration fee covers the 
book of abstracts, two coffee/refreshment breaks every day of the conference, a reception on June 27, 1999, 
a banquet on June 29, 1999, and admission to all sessions. 

ON-LINE INFORMATION is available at the website www.esm.vt.edu/mmconf/ 
FINANCIAL ASSISTANCE: The local organizing committee does not have funds to support even the 

partial travel of any potential participant. 

670 / Vol. 65, SEPTEMBER 1998 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



F. Pourboghrat 
Assistant Professor, 

Department of Mechanical Engineering, 
Michigan State University, 

East Lansing, MI 48824-1226 
Assoc. Mem. ASME 

K. Chung 
Department of Fiber and 

Polymer Science, 
Seoul National University, 

Seoul, Korea 
Assoc. Mem. ASME 

O. Richmond 
Alcoa Technical Center, 

Alcoa Center, PA 15069-0001 

A Hybrid Membrane/Shell 
Method for Rapid Estimation 
of Springback in Anisotropic 
Sheet Metals 
A semi-analytical method to predict springback in sheet metal forming processes has 
been developed for the case of plane strain. In the proposed hybrid method, for each 
deformation increment, bending, and unbending stretches are analytically superposed 
on membrane stretches which are numerically obtained in advance from a membrane 
finite element code. Springback is then obtained by the unloading of a force and a 
bending moment at the boundary of each element treated as a shell. Hill's 1948 yield 
criterion with normal anisotropy is used in this theory along with kinematic and 
isotropic hardening laws during reverse loading. The method has been applied for 
the springback prediction of a 2008-T4 aluminum alloy in plane-strain draw-bending 
tests. The results indicate the necessity of including anisotropic hardening (especially 
Bauschinger effects) and elastoplastic unloading in order to achieve good agreement 
with experimental results. 

1 Introduction 

With the continuous advancement of computational methods, 
especially finite element methods the analysis of forming pro- 
cesses is now becoming a powerful indirect design tool, which 
may significantly reduce costly experimental trials. The numeri- 
cal analysis methods, however, still need significant improve- 
ment in computational time to be widely useful for practical 
industrial applications. One popular scheme to reduce computa- 
tional time in a sheet metal forming analysis is to treat the sheet 
as a membrane, neglecting the variation of deformation in the 
thickness direction. Thus, a thin sheet is computationally con- 
sidered a two-dimensional material (Frey and Wenner, 1987; 
Sklad and Siekirk, 1990; Saran and Wagoner, 1991, Wenner, 
1992). Strain localization during stretching is one of the im- 
portant measures needed to evaluate formability of materials as 
well as to optimize forming processes. Numerical calculations 
based on membrane elements are cost-effective for analyzing 
strain localization, especially if the deformation gradient in the 
thickness direction is not so large. 

When bending is dominant, however, the deformation gradi- 
ent and therefore the stress gradient in the thickness direction 
become significant (Stoughton, 1985; Choudhry and Lee, 
1994). In such cases, membrane calculations are not sufficient. 
When external forces and moments are unloaded after bending 
(and unbending), the parts undergo springback, which is a 
physical consequence of the through-thickness stress gradient. 
Thus, springback is another important measure to analyze for 
process optimization (Karafillis and Boyce, 1992). 

In order to account for the bending property in sheet forming, 
shell elements have been developed by adding bending capabil- 
ity to membrane elements (Wang and Tang, 1988; Kubli et al., 
1993; Lee et al. 1991; Sriram et al., 1996). Since a plane-stress 
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condition is assumed in the shell element, the shell calculation 
is cost-effective compared to three-dimensional calculations. 
Another alternative to account for the bending is to superpose 
the effect onto the membrane calculations (Pourboghrat and 
Chandorkar, 1992; Pourboghrat and Chu, 1995). In this method, 
the bending effect is added analytically after membrane solu- 
tions are obtained separately: a sequential hybrid of numerical 
and analytical solution. In the shell calculations, solutions are 
obtained by iteratively solving nonlinear equilibrium conditions 
of forces and moment simultaneously, therefore, the sequential 
hybrid method is more cost-effective. 

In the present work, the hybrid method is further developed for 
the case of plane strain. In stretch forming, the curved surfaces of a 
punch and die introduce bending at contact areas. In draw forming, 
however, bending is followed by unbending as material moves 
around the curved contact surfaces. The method described here can 
account for the bending and unbending in stretch/draw forming. In 
order to account for the bending, pure bending is superposed on 
stretches which are obtained from membrane calculations for each 
element, considering the curvatures of tools at contact. When re- 
versely applied, the same bending algorithm can account for the 
unbending in draw forming, and also for spfingback during un- 
loading after bending and unbending. 

As for the superposition of the bending/unbending on mem- 
brane stretches, monotonic loading is assumed in which true 
(or logarithmic) strains are proportional: i.e., the principle val- 
ues and directions are fixed. For such deformation, stress is 
obtained from the deformation theory of plasticity based on 
minimum plastic work paths (Chung and Richmond, 1993). 
Springback is then obtained by unloading an external force and 
moment. Details of the hybrid method are illustrated in Sections 
2 through 8. In Section 9, the method is applied for the 
springback prediction of a 2008-T4 aluminum alloy and in Sec- 
tion 10, the predictions are compared with experimental results 
produced at Alcoa. The incorporation of unbending in draw 
forming along with anisotropic hardening are major differences 
between this work and similar previous works (Pourboghrat 
and Chandorkar, 1992; Pourboghrat and Chu, 1995). 

2 Constitutive Equations 
For elastic deformation, Hooke's law is used incrementally. 

Beyond the elastic limit, rigid-plasticity is used and further 
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elastic deformation in the plastic range is neglected for simplic- 
ity. In order to account for the Bauschinger effect during reverse 
loading, the kinematic hardening is incorporated as well as the 
isotropic hardening (the theoretical basis of the kinematic hard- 
ening is summarized in the Appendix). It is assumed that the 
material's effective stress-strain behavior, obtained from a uni- 
axial tensile test, can be expressed using the power law: 

~ + ~ = K ' ( g  + G)"" (2.1) 

where ~ is the effective stress which describes the size of the 

yield surface, while ~ (=  f d~) is the effective back-stress 
which describes the translation distance of the yield surface. 

Also, E ( = f d~) and e are the effective strain and the effective 
strain rate, respectively. Besides, E is the modulus of elasticity, 
K is the strength coefficient, n is the strain-hardening exponent, 
m is the strain-rate sensitivity coefficient, G is a constant, and 
i,, is a reference strain rate, all material constants. 

Utilizing the yield criterion proposed by Hill (1948) for rigid 
plastic sheets with normal anisotropy, the following relation- 
ships are obtained for the combination type of isotropic and 
kinematic hardening; i.e., [- 

=/(0"1 - < ) 2  + (~2 - od2) 2 
L 

( R +  1) 
a-------R----- (0"1 -- O~1)(O'2 -- Ot~2)] 1/2 , (2.2) 

2R ]~/2 
A~ = Aa~ + Aa~ (R + 1--) Aa ,Aa2  (2.3) 

under the plane-stress condition (0-3 = 0), where R is the normal 
anisotropy parameter. The conjugate effective strain is 

/ (R + 1) 
A~ = ~ ( 2 R  + 1) "[(R + 1 ) ' ( A c t  + Ae~) 

+ 2 R ' A e i ' A e 2 ]  In, (2.4) 

where A~ and A~ are obtained from d~ and d~ under the 
proportional true strain condition (see Appendix). In Eqs. 
( 2 . 2 ) - ( 2 . 4 ) ,  ai=l.2, ai=l.2, Aa i - l a ,  and Aei:l.2 are principle 
stresses, back-stresses, back-stress increments, and plastic strain 
increments, respectively. When the normality rule is applied, 
the following relationship is obtained; i.e., 

ACl A ~ { ( 0 - 1 0 L 1 )  R = . . . . .  } 
o-~ R +  1(#2 a2) , 

A(2 = AE'{ (O2 - OL2) R } 0--7" - R +-----1 (or, - a , )  (2.5) 

and /k£3 = - ( A Q  + A~2) from the plastic incompressibility 
condition. 

3 Simplifications for Plane Strain 
When the deformation is limited to the plane strain condition 

(i.e., At2 = 0), the constitutive equations are further simplified; 
i.e., 

R R 
(0"2 -- Ot2) -- (0"1 -- O~1), OL2 = al (3.1) 

R + I  R + I  

after considering Eq. (2.5) and the evolution law of the back- 
stress under the proportional loading condition (see Appendix). 
By substituting A¢2 = 0 and Eq. (3.1) into Eqs. (2.2) and 

(2.3), the effective stress, effective back-stress, and effective 
strain become 

~ = 1(0-1- c~,)t x/2R +_______~, A~ = IAal [  ~/2R +._________1 (3.2) 

1 

R + l  R + l  

R + l  
= (3.3) a~ IA<I 2727~+ 1 

By substituting Eqs. (3.2) and (3.3) into Eq. (2.1) under monot- 
onous loading and deformation conditions and by setting ~,, = 
AG/A-r  and {- = A T / A t  ( A t  is the time increment), the fol- 
lowing expression results relating the tangential stress (0-~ = 
a)  to the tangential strain (e~ = Cp) in the plastic range; i.e., 

0- = c ~ . K . ( q ,  + Co)" \ A e , , /  (3.4) 

where 

{ R + i  ,~,+l 
= V - / ]  (3.5) 

and % is a constant. This simplified constitutive relation allows 
the problem of plane-strain bending, unbending, and stretching 
of the sheet to be treated as one-dimensional. 

4 Kinematics 

Tangential Strains Caused by Bending, Unbending and 
Stretching: To calculate tangential strains caused by bending, 
unbending, and stretching, an element of the undeformed sheet 
with initial centerline length So, thickness to, and area Ao (=so, 
to), is divided into N layers through the thickness, with each 
layer having a thickness Azo (i.e., to = N" AZo), see Fig. 1 (a) .  
Tangential strains, c, are then calculated under the plane-strain 
condition and the kinematic assumption that plane sections re- 
main plane (Kirchhoff-Love) after the bending, unbending, and 

,4g o 

t° i • s° 

(a) 

1 

5 

(b) 

Fig. l (a)  An undeformed element of the sheet, and (b) an element of 
the bent sheet with N through-the-thickness layers 
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stretching. The latter assumption implies that through-the-thick- 
ness shear strains are small and can be neglected. The accuracy 
of this assumption was recently validated, even for cases where 
punch radius to thickness ratio is small and bending is dominant 
(Choudhry and Lee, 1994). 

The current centerline curvature, kc (=1 /R , ) ,  is calculated 
by adding incremental changes in the centerline curvature, Ak~, 
caused by bending and unbending the element, as 

kc : Z Akc. (4.1) 
0 

The current thickness of the sheet is calculated, using the con- 
stancy of volume, as follows: 

t =  IRcl" 1.0 + [e~.l's-------~. ] R c l ' s c  

where in Eq. (4.2),  s~ corresponds to the length of the original 
centerline fiber of the sheet. The radius of curvature and the 
length of the midsection of the sheet (z = 0), R ( = l / k )  and 
s, are related to Rc and s, as follows: 

,R, = [ R ~ ' . [ ~ / 1 . 0 +  A'----2---+~/1.0 A° ] (4.3) 
2 IRcl "s,. IR,.I "so 

R 
s = R,-~" so. (4.4) 

The current distance zs of any fiber (l) from the midsection 
and the current thickness Az, of any through-the-thickness layer 
(r)  is calculated from the following recursive equations when 
z~ = R / l R t ' t / 2 a n d R ~  = tR[ +z~:  

A z , . =  IR["  R , -  R ~ -  " 7 " ~ J  = 1 ~ N  

R 
R , =  Rt-, --r--~7"Az,-~ l = 2 ~ ( N +  1). (4.5) 

I/¢1 

R 
zi = zl ~ - -7-=-;-" Az t  t 

I/¢1 

Then, the current length s~ of any fiber ( l)  through the thickness 
is calculated from s, using the incompressibility condition (see 
Fig. l ( b ) )  as follows: 

st = (1 + k ' z t ) ' s  (4.6) 

Finally, the incremental tangential strain for each through-the- 
thickness layer (1) is calculated from the incremental change 
in the length of the fiber, 

where °st is the length of the fiber at the previous deformation 
increment. 

5 StresSes 

Cyclic Loading: The bending, unbending, and stretching 
deformations cause some of the through-thickness material fi- 
bers to undergo unloading (or reverse loading by changing the 
direction of stress), that is, first unload elastically then unload 
further rigid-plastically. In order to calculate stress after the 
unloading, the history of deformation prior to unloading for that 
material fiber must be known. The information that need to be 
saved each time a material unloads are: ( 1 ) the strain and stress 
level from which the material unloaded; e.g., esu and 0-sv, and 

(2) the " type"  of stress-strain curve the material unloaded 
from; i.e., "type 1" or "type 2".  In this paper, " type"  refers 
to the shape of the stress-strain curve. The shape of a stress- 
strain curve is assumed to comprise of an origin, a linear (elas- 
tic) and a nonlinear (plastic) portion, see Fig. 2. A type 1 curve 
has the same shape as a typical stress-strain curve obtained 
from a uniaxial tensile test. A type 2 stress-strain curve is an 
inverted type 1 stress-strain curve. When a material fiber on a 
type 1 stress-strain curve unloads, it switches to a type 2 stress- 
strain curve with its origin at (0-sv, esv), as shown in Fig. 2. 
After the elastic unloading, the stress-strain level at which the 
re-yielding occurs, i.e., (0-sL, esL), is given by (see Fig. 2) 

e A e  I 

(5.1) 
Ac 

0-.~,, = 0-su + T S ~ - . / 3 . 1 0 - , u I  

where E '  = E / ( 1  - u 2) is the plane-strain modulus and u is 
the Poisson ratio. For an undeformed material, esc and 0-so are 
set equal to 

esL = ±e~ 
( 5 . 2 )  

0-SL  : -~- 0- 3, 

where ( + )  is used for type 1 and ( - )  is used for type 2 curves, 
respectively. The condition for an elastic unloading to occur is 
Ae < 0 (for a type 1 curve) and Ac > 0 (for a type 2 curve). 

Figure 2 shows the assumed tangential stress-strain curve, 
- c, for a material with anisotropic hardening in reverse loading. 
The re-yielding stress in this anisotropic hardening case is deter- 
mined by a positive constant parameter/3. When /3. [0-svl is 
twice the initial yield stress of the material; i.e., 2ay, the re- 
yielding occurs according to pure kinematic hardening rule, 
and when/3 = 2, the re-yielding occurs according to isotropic 
hardening rule. Other values of/3 provide different re-yielding 
stress levels for the combination type of isotropic and kinematic 
hardening rule. 

Tangential Stresses Caused by Bending, Unbending, and 
Stretching: In this section, the word "starts" or the phrase 
"starting point" refers to the stress-strain state at the reference 
configuration and the phrase "ends up"  refers to the stress- 
strain state at the current configuration. It can be shown that 
there are a total of 20 possible locations on the 0- - e space 
(all four quadrants) where a material fiber can end up after 
experiencing an increment of deformation. Figures 3 and 4 show 
ten of these possible locations marked on the c7 - c curves. The 
other ten (out of 20) possible locations are not shown, but they 
correspond to the same ten cases in Figs. 3 and 4, except that 
the starting points are switched from a type 2 to a type 1 curve 
and vice versa. 

Figure 3 shows six possible locations, where a material fiber 
ends up, if it starts from (o0-, %) on the linear (elastic) portion 
of a type 1 curve. The exact location where the material fiber 
ends up depends on the magnitude and sign of the strain incre- 
ment, Ae, experienced by the material fiber. Figure 4 shows 
the other tour possible locations where a material ends up, if it 
starts from (o0-, o e) on the nonlinear (plastic) portion of a type 
2 curve. It is worth mentioning that although the same expres- 
sions are used to calculate stresses for locations 5, 2, and 3 in 
Fig. 3 and for locations 8, 9, and 10 in Fig. 4, the reference 
states for these two sets are different. For the first set of locations 
the reference states are elastic while for the second set of loca- 
tions the reference states are plastic. 

In Fig. 2, Cp is the strain on the nonlinear (plastic) portion 
of the stress-strain curve and A0- is the increase in stress due 
to ep, as measured from the origin of A0-(ep) - ep coordinate 
system. It is assumed that the nonlinear portion of the stress- 
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Fig. 2 Tangential stress-strain curve for a material with anisotropic hardening 
in reversed loading 

strain curve is the same for all curves in the cyclic loading. 
Therefore, once an expression is found for 2xcr(ep), using the 
original stress-strain curve of the material, it can be used for 
subsequent loading also. To calculate £xa(ep), it is assumed 
that the stress and total strain can be written as (see Fig. 2) 

E -~ ~y + ~p (5.3) 

cr = Oy + ZXo(~p) (5.4) 

where ~ry is the original tangential yield stress and Ey • O'y /E '  
is the original yield strain of the material. By substituting from 
Eqs. (5.3) and (5.4) into (3.4), the following expression for 
2xc~(ep) can be found: 

~Xo'(ep) = a "  K "  l ep + e* I" 2xep " " S ~  - ~*" ( 5 . 5 )  

In Eq. (5.5), c* and a* correspond to the origin (o in Fig. 

4 

/JGm 

(a,e) 

Q3 ® 

j® 
(¢,e) 

(o=u,e~) 

(J 

(e,e) 

. . . . .  . J  

a l  

P a~u, 

= E  

02 

Fig. 3 Six possible locations is stress-strain space where a material fiber can fall during cyclic 
loading if it starts on the linear portion of a type 1 curve 
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Fig.  4 Four possible locations in stress-strain space where a material fiber can fall during cyclic 
loading if it starts on the nonlinear portion of a type 2 curve 

2) of  the A a ( c r )  - ep coordinate system. For an undeformed 
material, e* and a* are initially set equal to ey and ~rr, respec- 
tively. After each unloading, the origin of A~r(ep) - ep curve 
moves along the stress-strain curve, cr =- e, to a new location 
calculated as following: 

[ ~* = ~ + I~su - ~ e ~  

a* = a '  K" l e*l ~o " (5.6) 

where E~ is the previous e* and esLe is defined in Fig. 2. If e* 
and or* in Eq. (5.5) are replaced with the constants ey and ay, 
then it is implied that the origin of Acr(ep) - ep coordinate 
system is always fixed and that the entire nonlinear portion of 
the stress-strain curve is used to calculate Aa(ep)  after each 
unloading. But, if the updated values of e* and or* from Eq. 
(5.6) are used in Eq. (5.5),  then only that portion which extends 
beyond the new origin will be used to calculate Acr(ep) after 
each unloading. 

The choice of an expression to be used to calctflate stress at 
current configuration, ~r, depends upon several conditions. In 
order to choose the correct expression, it should be determined 
if the starting (reference) stress, °or, is ( 1 ) on the linear (elastic) 
or nonlinear (plastic) portion of  the stress-strain curve and (2) 
on a type 1 or type 2 curve. Based on these two information 
and the following additional conditions, the correct expression 
for calculating current stress, cr, can be decided. The flow charts 
shown in Tables 3 and 4, summarize the current stress calcula- 
tion scheme to be described next. 

Case h Starting From the Linear (Elastic) Portion of 
o" - ~ Curve :  For this case, the following parameters are 
calculated first: 

f z~X~TS'U = Esu -- E 
A e r s z  = esL - e (5.7) 

AeuML = A e r s u "  Aersz 

where e ( = E Ae)  is the total strain. Then, depending upon the 
0 

Journal of Applied Mechanics 

sign of  Ae and the type of stress-strain curve (i.e., type 1 or 2, 
in Figs. 3 and 4) ,  the correct expression to be used for calculat- 
ing ~r is decided based on the following additional conditions: 

L1.  For curve type = 1 and Ae < 0 or curve type = 2 and 
Ae > 0, then: 
if  Aersu = 0 (see location 1, Fig. 3),  use 

~r = asv. (5.8) 

if  AeUML < 0 (see location 6, Fig. 3),  use 

cr = °or + E ' '  Ae. (5.9) 

if  AeUML > 0 and IA~sul  < IA~s~l (see location 4, Fig. 3),  
use 

Ae 

~Ac~ = Act(G,2) - Aa(cp~) (5.10) 

~2 = I~ - ~sLPI. 

In Eq. (5.10),  esLe is the previous Esc (see Fig. 2).  

L2.  For curve type = 1 and Ae > 0 or curve type = 2 and 
Ae < 0, then: 
if  AersL  = 0 (see location 2, Fig. 3) ,  use 

~r = crsL. (5.11) 

if AeUML < 0 (see location 5, Fig. 3),  Eq. (5.9) should be used 
to calculate or. 
if AEUMC > 0 and [zx~TsuI > IA~TsLI (see location 3, Fig. 3), 
use  

Ae 

~ ,  = I ~ - ~sL I .  

(5.12) 
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Fig. 5 A schematic of the two-dimensional draw bending operation 

Case II: Starts From the Nonlinear (Plastic) Portion of 
tr - ~ Curve: 

IL l .  For curve type = 1 and Ac > 0 or curve type = 2 
and Ae < 0 (see location 7, Fig. 4),  use 

Ac 
cr = °~r + - ~ - "  6Act 

6An  = Act(ere2) - Acr(Cpl) (5.13) 

c . ,  = I °c  - ~,LI 

It should be noted that since unloading does not occur an this 
case, esL in Eq. (5.13) is the same as esLp in Fig. 4. 

11.2. For curve type = 1 and Ae < 0, first calculate 

e E '  (5.14) 

/O~ ~ ° O- - -  N t s~ - . "  I°~1 

11.3. For curve type = 2 and Ae > 0, first calculate 

Io~1 
esc + /3' E '  

(5.15) 

L = ° O- 

Next, recalculate A e r s v ,  AersL,  and AeUML from Eq. (5.7).  
Then: 
if  AeVML < 0 (see location 8, Fig. 4),  Eq. (5.9) should be used 
to calculate a. 
if AersL = 0 (see location 9, Fig. 4),  Eq. (5.11 ) should be used 
to calculate or. 
if AeUM~. > 0 (see location 10, Fig. 4) ,  Eq. (5.12) should be 
used to calculate or. 

6 Tension and Bending M o m e n t  

Once stresses are calculated according to Section 5, they are 
then integrated through the thickness to calculate tension and 
bending moment about the midsection for each element of the 
sheet, as follows: 

N 

T = ~ 6 (Z , , , ) 'AZm (6.1) 
m 1 

N 

M = ~ ~(Zm)' Zm ° AZ . . . .  (6.2) 
m-  [ 

In Eqs. (6.1) and (6.2),  N represents the number of layers 
assumed through the thickness and ~ and ~,,, are defined as 

O ' ( Z m )  "~ O ' ( Z m + l )  
b(Zm) = (6.3) 

2 

and 

_ z,, + z,,,+t (6.4) 

7 Springback 

Calculation of  springback involves iterative procedure to cal- 
culate a new midsection curvature and length for each element, 
s and k,  such that the resulting tension and bending moment 
about the midsection vanish everywhere in the sheet. In this 
iterative procedure, the Newton-Raphson method is used to cal- 
culate the updated values for s and k. 

For comparison purposes, springback was also calculated us- 
ing only the elastic and neglecting the plastic range at the last 
step. For such cases, the final unloaded midsection curvature 
and the length of each element, s and k, are calculated such 
that tension and bending moment calculated by the elastic defor- 
mation are equal to those calculated by the plastic deformation 
prior to the unloading: 

° r +  AT,, = 0 
(7.1) 

" M +  AM~ = O. 

To obtain s and k after springback, consider the following 
tangential strain after tension and bending is applied to a flat 
element; i.e., 

Z + C  
c(z) - (7.2) 

R - c  

where c is the distance between the midsection and the neutral 
axis (where e = 0) caused by tension, and R is the radius of the 
midsection curvature. The tangential strain increment between 
before and after elastic unloading becomes 

Z + c  Z + ° c  
Ae(z)  - - -  - e - °e (7.3) 

R.  - c °R - °c  

where the superscript " o "  indicates known values based on 
the geometry before the elastic unloading and R, is the radius 
of curvature after the elastic unloading. Utilizing Eq. (7.3) to 
calculate the elastic tension and bending moment, and the rela- 
tionships shown in Eq. (7.1) lead to 

t 2" °T" (A  -- 1) + E '  " t 3 
R,, = (7.4) 

1 2 . ° M . ( A -  1) 

where A is a known constant defined as 

Table 1 Mechanical properties of the 2008-T4 aluminum alloy 

Material K n m E R Cry v p 

(MPa) (GPa) (MPa) (Friction 
Coeff ) 

AL2008-T4 460.0 0.247 0.0 69.0 0.70 133.0 0.33 0.1 
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Table 2 Tooling geometry 

Die Clearance Wall 
Case t Rp Rd opening Yp (mm) angle BHF 

(ram) (ram) (ram) (ram) (ram) (Deg.) (KN) 

a 1.0 3.175 3.175 66.68 45.0 8.0 89.0 89,0 

b 1.0 6.35 6,35 80.31 50.0 15.4 78.0 97.0 

E'  • °I3 

A = 12" °R. ° M -  °T.  °t2" (7.5) 

The unloaded length of each element of the sheet is also 
calculated as follows: 

( c "c)  
s = °s.exp R . -  c . R _--o (7.6) 

Unloaded Shape of the Sheet After Springback 
Nodal coordinates of the unloaded elements, after springback, 

are calculated from the following expressions: 

A x ( i )  = s ( i ) ' c o s  [ ~  k ( j ) "  s ( j ) ]  

j:1 (8.1) 

LAY(i) = s ( i ) . s i n  [~j=, k ( j ) .  s ( j ) ]  

with boundary conditions, x(0)  = x,,; y(O) = y, .  in Eq. (8.1), 
s ( i )  represents the midsection length of the i th element. 

9 Verification Procedure 
The theory described in this paper was tested using the plane- 

strain finite element membrane code SHEET-S (Saran and 
Wagoner, 1991 ). SHEET-S, a two-dimensional finite element 

analysis code, was originally developed at Ohio State University 
to simulate the stretch/draw forming operation of plane-strain 
sections using the incremental theory of plasticity with mem- 
brane line elements. Using the theory developed and membrane 
solutions obtained from the SHEET-S code, springback and 
formation of the side wall curl in two-dimensional draw bending 
operation, see Fig. 5, were predicted. To verify the accuracy, 
the predictions were compared with experimental results. 

A two-dimensional draw bending experiment, shown in Fig. 
5, was performed using the 2008-T4 aluminum alloy sheet of 
1.0 mm thickness. Table 1 shows the mechanical properties of 
the 2008-T4 aluminum alloy. Table 2 shows two different punch 
and die radii, Rp and R,~, and clearances used for the experi- 
ments. It was observed from these experiments that after the 
unloading, curls were formed on the sidewall of the parts as 
shown in Figs. 6 (a )  and 6(b) .  Figure 6 (a )  shows that sidewall 
curls are more pronounced for parts formed with the sharper 
die radius and tighter clearance. 

For the numerical prediction, the SHEET-S code was em- 
ployed to simulate the draw bending experiment with forming 
conditions shown in Table 2. The updated shape of the sheet, 
that is nodal coordinates obtained from SHEET-S for every 
deformation increment, was used to calculate the updated mid- 
section length and curvature of each element. Then, using the 
bending/unbending theory, tangential strains and stresses were 
calculated and integrated through the thickness to obtain tension 
and bending moment for each element. 

Table 3 Flow chart for case I: starting point from the linear (elastic) portion of stress-strain curve 

Calc. o from Eq. (5.8) 
(Location I, Fig. 3) 

Calc. o from Eq. (5.9) 
(Location 6, Fig. 3) 

Calc. o from Eq. (5.10) Y ~ A  ~ 
(Location 4, Fig. 3) ] " 

I Given: ] 
• Strain Increment, Ae. 
• Type of o - e curve (e.g. "Type 1" or "Type 2"). 
• (OsU ,gSu ) .  

• ( O s L , e s ~ )  from Eq, (5.1). 
A e r s v  , AtrsL and Atuut. from Eq. (5.7). 

/ 
I i  At < 0 and "Type 1" curve. ] 

/ 

Or, / 
~e > 0 and "Type 2" curve.J 

N 

N 

i -o 1 or 
• Ae < 0 and "Type 2" curve 

@ Calc, o from Eq, (5.11) 
(Location 2 Fig 3) 

N 

N 
<0•Calc. 

o fromEq, (5.9) I 
(Location 5, Fig, 3) 

=0•Calc. o fromEq. (5.12) I 
"1 (Location 3, Fig. 3) ] 
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Table 4 Flow chart for case I1: starting point from the nonlinear (plastic) portion of stress-strain 
curve  

I Given: ] 
• Strain Increment, Ae, 
• Type of a - e curve (e.g. "Type 1" or "Type 2"). 
• (OSU ,ese ), 

. ' 

(Location 7, Fig, 4) ° (Ost. ,est,)  from Eq, (5.14). • ( O s t .  ,est ,)  from Eq. (5.15).j 

Calculate: ] 
• A,~rsu , A~rs~ and A~uuL from Eq. (5.7). 

~ Y  Calc. o from Eq. (5,9) I 
N ~  (Location 8, Fig. 4) [ 

I " ~ "  " [ (Location 10, Fig. 4) J 

In this paper, for comparison purposes, both pure kinematic 
(KIN)  as well as pure isotropic (ISO) hardening laws were 
employed. Springback was calculated using both elasto/rigid- 
plastic (EPUN) as well as elastic unloading (ELUN) methods. 
This provides four sets of predicted unloaded shape for each 
set of boundary conditions. Since predicted springback results 
using the elastic and elasto/rigid-plastic unloading theories 
were not significantly different under the isotropic hardening 
(ISO) condition, only the results of the elasto/rigid-plastic un- 
loading are reported in this paper. 

1 0  R e s u l t s  a n d  D i s c u s s i o n s  

Figures 6 (a )  and 6(b)  show that pure kinematic hardening 
law with the elasto/rigid-plastic unloading (KIN-EPUN)model  
predict the most accurate springback results for the 2008-T4 
aluminum alloy in two-dimensional channel forming. The pre- 
dicted results, i.e., KIN-EPUN, exactly match the experimental 
data for both cases (a) and (b) .  The other two results based 
on the kinematic hardening law with the elastic unloading (KIN- 
ELUN) and the isotropic hardening law with the elasto/rigid- 
plastic unloading (ISO-EPUN), do not predict the unloaded 
shape of the channel well. 

The differences in the predictions stem from their differ- 
ences in predicting the unloaded midsection curvature of the 
sheet at the three critical regions on the channel: the die 
radius, the wall, and the punch radius regions as shown in 
Fig. 5. The sheet in these three regions undergo different 
deformations with different amount of stretching, bending, 
and unbending. The two models, KIN-ELUN and ISO-EPUN, 
underestimate, compared with KIN-EPUN, the springback of 
the sheet at the punch region where the sheet only bends and 
slightly stretches over the punch radius but does not draw 
over it. However, all the three models predict almost the 
same springback in the die region where the sheet slides and 
stretches over the die radius but does not enter into the die 
cavity. Finally, both KIN-ELUN and ISO-EPUN underesti- 

mate, compared with KINLEPUN, the springback for the 
sheet that bends, unbends, and stretches as it draws over the 
die radius and forms the wall region of the channel. 

In order to better understand the cause of different results 
observed in Figs. 6 ( a ) - ( b ) ,  Figs. 7 ( a ) - ( c )  are included. 
These figures show the evolution of the normalized moment- 
curvature (M/My - k/ky) curves for the sheet that undergoes 
( 1 ) a bending to a curvature k after an initial stretch to a tension 
T, followed by (2),  an unbending under the same tension T, 
until the sheet is straightened (k = 0), and finally ( 3 ), an elasto / 
rigid-plastic unloading that causes both tension and bending 
moment vanish (T = M = 0). After the complete unloading, 
since the curvature of the element does not vanish (k, ~ 0), k, 
is used as a measure of springback. Figures 7 ( a ) - ( c )  show 
the difference in (M/My - k/ky) curves and springback after 
the unloading for both kinematic and isotropic hardening laws 
at different levels of applied tension (T/Ty). Here, My and ky 
are the bending moment and curvature in pure bending when 
initial yield occurs at the outer fiber, while Ty is the initial 
uniaxial yield strength of the sheet: 

My -- (2 + n) • k~ 

(10.1) 2 . (1  - y 2 ) ° O ' y  

ky= t 'E  

Tv = oy.t.  

In Fig. 7 (a )  (T/Ty = 0), during the transition from step 1 
to step 2, the magnitude of the normalized curvature, k/ky, at 
M = 0 and normalized bending moment, [ M/Myl, at reyielding, 
are larger for the isotropic case (ISO) than for the kinematic 
hardening case (KIN).  As tension increases toward the tension 
at yield (T/Ty = 1.0), the curvature k/ky at M = 0 and bending 
moment, ]M/Myl, at re-yielding become almost the same for 
both the isotropic (ISO) and the kinematic hardening cases 
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(KIN) as shown in Fig. 7(b) .  Figure 7(c)  shows that this trend 
reverses as tension increases beyond the initial yield (T/Ty = 
1.25). 

The magnitude of k/ky at M = 0 determines the springback 
of the sheet at the die and punch radii of the channel. Figures 
7 ( a ) - ( b ) ,  where 0.0 -< T/Ty _< 1.0, represent the deforma- 
tion and springback characteristics of the sheet at the punch 
radius, while Fig. 7 (c ) ,  where T/Ty > 1.0, represent the de- 
formation and springback characteristics of the sheet at the 
die radius where stretching is larger than at the punch radius 
region. The deformation and springback characteristics of the 
wall of the channel is represented by Fig. 7 (c ) ,  after the 
unloading (step 3 ), where the sheet first straightens (k/ky = 0) 
and then unloads elasto/rigid-plastically to a final curvature k, 
at M = 0. As shown in Fig. 7 (c ) ,  the curvature k, is larger 
for the kinematic hardening case (KIN) with the elasto/rigid- 
plastic unloading than it is for the isotropic hardening case 
(ISO).  In fact, the above analyses are consistent with the 
results shown in Figs. 6 ( a ) - ( b )  at the wall and the die and 
punch radii regions. 

Figures 8 (a )  - (b) show the M/My - k/ky curves at different 
tension levels T/Ty for kinematic and isotropic hardening laws, 
respectively. It is interesting to see that for the isotropic harden- 
ing case, as tension level increases, the magnitude of the bend- 
ing moment in reversed loading and springback, as measured 
by k, after the unloading, decreases. On the other hand, for the 

25 I I t I I 

L E A D E D  

l0  - - -  KIN-F~PUN 

* - - KIN-ELUN 

- 5  . . . ~ " ~ " ~  ~'~" -- " - -  I S O - E P U N  

• ..-iag ° • , 

-50 

-65 I I I I I 

-206 

X (ram) 

- 1 8 5  - 1 6 4  - 1 4 3  - 1 2 2  - 1 0 1  - 8 0  

Fig.  6 ( a )  
sheet for the 2008-T4 aluminum alloy (case a, T a b l e  2 )  
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Fig.  6 ( b )  Three predicted and the measured unloaded shape of the 
sheet for the 2 0 0 8 - T 4  a l u m i n u m  alloy (case b, T a b l e  2 )  
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Fig.  7 ( a )  Normalized moment and curvature in cyclic loading, for kine- 
matic and iaotropic hardening laws and tension T I T  v = 0. Unloading from 
step 2 to step 3 is done elasto/rigid-plaatically. 
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Fig. 7(b) Normalized moment and curvature in cyclic loading, for kine- 
matic and iaotropic hardening laws and tension T/Ty = 1.0. Unloading 
from step 2 to step 3 is done elasto/rigid-plastically. 
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Fig .  7 ( c )  N o r m a l i z e d  m o m e n t  and curvature in cyclic loading, for kine- 
matic and isotropic hardening laws  and tens ion T I T  r = 1.25. Unloading 
from s tep  2 to s tep 3 is d o n e  elasto/rigid-plast ical ly .  

kinematic hardening case, the trend is reversed. Consequently, 
as tension level increases, the magnitude of the side wall curl 
increases for the kinematic hardening while it decreases for the 
isotropic hardening. Assuming that the real materials' stress- 
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Fig. 8(a) Normalized moment and curvature in cyclic loading, for kine- 
matic hardening law at tension levels: T/Ty = O, T/Ty = 1.0 and T/Ty = 
1.25. Unloading is done elasto/rigid-plastically. 
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Fig. 8(b) Normalized moment and curvature in cyclic loading, for iso- 
tropic hardening law at tension levels: T/Ty = O, T / T  v = 1.0 and T/Ty = 
1.25. Unloading is done elasto/rigid-plastically. 

strain curve falls somewhere between the isotropic and the kine- 
matic hardening curves, shown in Figs. 3 and 4, then according 
to results of Figs. 8 ( a ) -  (b) ,  applying more tension might not 
always work as a solution to reduce springback. Ayres (1984) 
showed that it is sometimes necessary to use multistamping 
operations, rather than single stamping operation with high ten- 
sion, to reduce springback. 

11  S u m m a r y  a n d  C o n c l u s i o n s  

A semianalytical method was presented in this paper for cal- 
culating springback when a sheet metal undergoes multiple 
plane-strain bending, unbending, and stretching. In the proposed 
hybrid method, bending and unbending stretches are analyti- 
cally superposed on membrane stretches which are numerically 
obtained in advance from a membrane finite element code. 
Springback is calculated using the elasto/rigid-plastic unloading 
of the force and bending moment at the boundary of each ele- 
ment treated as a shell. Hill 's plane-stress yield function with 
normal anisotropy was used. For reverse loading, both kine- 
matic and isotropic hardening laws were incorporated in this 
theory. This method due to its nature of post-processing bending 
correction, unlike nonlinear shell models, contribute very little 
to the overall computational time needed to analyze the sheet 

metal forming problem and therefore retains the efficiency ad- 
vantage of the membrane code. 

For verification purposes, several results for the unloaded 
shape of the sheet formed by the stretch/draw operation into a 
channel were obtained for the 2008-T4 aluminum and the results 
were compared with experimental results. For the 2008-T4 alu- 
minum alloy, it was found that the kinematic hardening model 
with the elasto/rigid-plastic unloading (KIN-EPUN) well pre- 
dicted the results measured experimentally. 

It was further observed that, depending upon the hardening 
model in reversed loading, different unloaded shapes and side- 
wall curls were predicted. Since the accurate prediction of 
springback of stamped sheet metals are sensitive to mechanical 
properties of materials under the unloading condition, further 
experimental study to characterize appropriate material proper- 
ties in reversed loading might be essential. 
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2 Effective Stress and Effective Plastic Strain Incre- 
ment. When a current yield stress surface is translated from 
an initial position by a back-stress, o~, the plastic work incre- 
ment, dw, becomes 

K i n e m a t i c  H a r d e n i n g  in Plast ic i ty  

1 Introduction. In the classical plasticity, the effective 
stress represents a convex yield stress surface in the stress field 
which limits the elastic deformation range of materials. The 
proper measurements and descriptions of the initial yield stress 
surface and its evolution ate essential for the constitutive law 
in plasticity. Since the yield surface and, especially, its evolution 
are difficult to measure, the isotropic hardening of the initial 
yield surface is commonly assumed in the theoretical plasticity. 
Under such assumption, the initial yield surface expands radially 
(or proportionally) in the stress field during plastic deformation. 
The assumption is reasonably effective to predict plastic defor- 
mations, especially when the deformations of material elements 
are approximately monotonous and proportional. 

If material elements undergo nonmonotonous deformations, 
the assumed isotropic hardening might not be so effective, even 
though deformations are approximately proportional. When 
sheet parts are removed from tools after forming, material ele- 
ments experience elastic unloading and springback. During this 
reverse loading, material elements usually demonstrate the 
Bauschinger effect, which is caused by the translation of the 
yield stress surface. The isotropic hardening assumption there- 
fore does not properly predict the Bauschinger effect and the 
springback. Assuming the initial yield stress surface to translate 
in the stress field without changing its shape and size during 
plastic deformation is another way to simplify the evolution of 
the yield stress surface: kinematic hardening. In order to de- 
scribe the expansion and translation of the yield stress surface 
during plastic deformation, the combination type of isotropic 
and kinematic hardening is also commonly used. 

In order to provide a theoretical basis for kinematic hardening 
(and also for the combination type), the definitions of effective 
stress, effective plastic strain increment, and effective back- 
stress increment are discussed here along with the evolution of 
the back-stress. The definitions are for any initial anisotropic 
yield stress surfaces, which are described as first-order homoge- 
nous functions. The flow theory is also derived by applying the 
normality rule. The deformation theory based on the minimum 
effective plastic strain path is then derived from the flow theory 
in order to provide a theoretical basis for computational meth- 
ods. Discussions are for rigid-plasticity based on a materially 
embedded (or rotationless) coordinate system. 

d w = o ' . d E = ( o ' - a ) . d E + o L . d e .  (A1) 

where o" and dE are the Cauchy stress and the increment of 
plastic strain tensors, respectively. It should be noted that all 
parameters, set in boldface type, correspond to tensors. The 
effective quantities are now defined considering the following 
modified plastic work equivalence relationships, i.e., 

dw, c~ : (o- - o&. dE = ~ d :  (A2) 

where ~ and d :  are the effective stress and effective plastic 
strain increment, respectively. Note that 9,  is defined in Eq. 
(A2) for the stress translated by or. Therefore, ~ is obtained 
from the initial effective stress (which is relevant to the relation- 
ship, ~ d :  = o" dE) by replacing o- with o- - or. Then, the 
effective plastic strain increment for the kinematic hardening 
in Eq. (A2) becomes equivalent to the initial effective strain 
increment, i.e., the effective plastic strain rate surface is station- 
ary. 

If ~ and d :  are defined from the relationship of plastic work 
equivalence, ~ d :  = o'. dE, the effective plastic strain increment 
evolves as the yield stress surface translates during kinematic 
hardening. The effective plastic strain increment then becomes 
singular when a stress on the yield stress surface reaches the 
origin of the stress field, which is a major drawback of this 
definition. 

3 Evolution of Back-Stress and Effective Back-Stress In- 
crement. As for the translation of the yield stress surface for 
kinematic hardening during plastic deformation, the following 
evolution law is assumed here for the back-stress (Ziegler, 
1959), i.e., 

d a  ~ (o" - ~) (A3) 

d~ 2 

where d a  is the Jaumann increment (the increment in the mate- 
fially embedded coordinate system). When plastic deformation 
is incompressible, the yield stress surface is a cylinder aligned 
perpendicularly to the deviatoric plane. Therefore, its translation 
is effective only along the deviatoric plane. In the deviatoric 
stress field, Eq. (A3) becomes 

A P P E N D I X  

Fig. A1 Yield surface translates along the stress increment direction 
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Fig. A2(a) 

+ 

v r 

Work hardening caused by translation of the yield surface but without size change 
0 2  

~ 

~ O l  

O1 

o l  

at 

• 0 1  

0 2  

Fig. A2(b) Plane-strain loading and unloading, according to Fig, A1 
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Fig, A2(c) Schematic representation of total stress during loading and unloading. The 
dark shaded area for back stress indicates the amount to be subtracted from the total 
stress during the unloading. 

doL' ~ (o" - a ' )  (A4) 

where the superscript ..... represents quantities in the deviatoric 
space. 

Another common assumption for the translation of the back- 
stress is along the plastic strain increment (Prager, 1956): 

d a ' ~  de. (A5) 
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Fig. A3 Work hardening caused by translation and size change of the yield surface 

Note that, for the evolution law in Eq. (A4) ,  proportional plastic 
deformation is obtained for proportional loading (from an initial 
state) and vice versa as schematically illustrated in Fig. AI (a) .  
However, for the evolution law in Eq. (A5),  nonproportional 
plastic deformation is obtained for proportional loading (or non- 
proportional loading is obtained for proportional plastic defor- 
mation) as shown in Fig. Al  (b).  Only an exceptional case is 
found for the Mises yield stress surface, in which Eqs. (A4) 
and (A5) are equivalent, i.e., (o- '  - a ' )  ~ de.  

As for the effective back-stress increment, d~ ,  the value is 
obtained from the initial effective stress by replacing o- with 
dol. The definitions of the effective quantities for stress, plastic 
strain increment, and back-stress increment are for any initial 
anisotropic yield stress surfaces, which are expressed as first- 
order homogenous functions. They are also applicable for the 
combination type of isotropic and kinematic hardening laws by 
properly relating work-hardening with the size increase and 
translation of yield stress surfaces, especially when loading and 
deformation are proportional. 

When plastic deformation and loading are monotonously pro- 
portional (from an initial state) as shown in Fig. A1 (a) ,  

dw~ = o~" de = ~ d ~  (A6) 

where ~ = f d~. Therefore, 

AE L 
~ t! 

Fig, A4 A schematic representation of the yield surface is translating 
and changing size 

d w  = dw~ ,~ + dw~ = F~dg + ~dz..  (A7) 

For general cases, 

dw~ = oz. de  = + & d ~  (A8) 

where the value & is obtained from the initial effective stress 
by replacing ~r with a .  In Eq. (A8),  the negative sign is for 
the case, a .  de < 0. Therefore, 

d w  = dwo_~, + dw~ = ~ d - (  +_ &dg. (A9) 

Equations (A7) and (A9) are also valid for the combination 
type. 

For demonstration purposes, plastic energy dissipated during 
proportional loading/unloading under the plane-strain condition 
is schematically discussed in Fig. A2 for a planar isotropic 
material which hardens kinematically. Figure A2 (a)  shows that 
the measured work-hardening is caused by the translation of an 
initial yield surface without its size change. In Fig. A2(b) ,  
stress states are schematically illustrated for loading (A and B) 
and unloading (C, D, and E).  In Fig. A2(c) ,  the dark shaded 
area for & is to be subtracted since oz. de < 0 during unloading 
from C to D and E. 

4 F l o w - T y p e  C o n s t i t u t i v e  L a w  a n d  t h e  D e f o r m a t i o n  
T h e o r y .  According to the normality rule, the following rela- 
tionships are obtained, i.e., 

O~ 0 ~  Od-( 
de = d ) t ~ =  d ) t 0 ( o . _ a )  ' o - -  a = K ~  (A10) 

or 

OF' 0~'~ Odg' 
, o "  - oL' = K ( A l l )  d e  = d)t  oo . ,  = d)t  o (  o. ' _ a ' )  

in the deviatoric space for incompressible plasticity. When the 
relationship in Eq. (A2) is applied for Eqs. (A10) and (AI 1 ), 
dk = dE and K = ~ for the first-order homogenous effective 
functions. Equations (A3) and (AI0 )  (or Eqs. (A4) and 
( A l l ) ) ,  along with work-hardening relationships associated 
with the size change ( ~  - ~-) and the translation (~ - ~) of 
the yield stress surfaces, make up the flow type of constitutive 
law (see Fig. A3). 

For computational applications, in which assuming deforma- 
tion paths during a small discrete step is inevitable, assuming 
the proportional true (or logarithmic) strain is convenient: incre- 
mental deformation theory. For materials which harden isotropi- 
cally, the proportional true strain path is the minimum plastic 
work (or minimum effective strain) path (Chung and Rich- 
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mond, 1992). For materials which harden kinematically (and 
also for the combination type), the proportional true strain path 
provides the minimum effective strain path since the effective 
plastic strain increment defined by Eq. (A2) does not evolve 
(stationary). Therefore, the quantity associated with a plastic 

work increment defined in Eq. (A2),  Awo_. (=  f dw~,_~), 
becomes minimum. The proportional true strain increment is 
obtained when the stress increment changes proportionally 
along ~r - ce (or or' - a ' ) .  Under the assumption of the 
proportional true strain path, deformation is completely separa- 
ble from rotation. Therefore, the stress can be updated conve- 
niently from the deformation only, using the constitutive law 
based on the materially embedded coordinate system. 

Under the proportional true strain condition, the (minimum) 
effective strain is obtained from the (stationary) plastic strain 
increment simply by replacing the plastic deformation incre- 
ment, de ,  with the logarithmic strain increment, AeL, i.e., 

Ag ( =  f d g ) =  dg(A~L). (A12) 

Also, Eqs. (A10) and (A11 ) become 

A ~ 0 ~ = A ~  0 ~  0A~ 
A6L = 0o" 0 ( o" -- ce) ' o" - c¢ = ~c~ --0A~L 

and 

0o" 

respectively, while 

a <  

0 ( ¢ '  - c e ' )  ' 

8A~ 
o . . ~  c e r  - t  _ _  , 

- -  = o ' ~  0 ~ X , e L  

(A13) 

(A14) 

Ace - ¢r - ce (or Ace' ~ o" - ce'). (A15) 

Equations (A13) and (A15) are applicable for the combina- 
tion type of isotropic and kinematic hardening, in which the 
isotropic hardening and the kinematic hardening are two ex- 
treme cases. The discrete increment of the Cauchy stress is 
proportional along o" - oz (or o"  - ce'), accounting for the 
size change and the translation of the yield stress surface as 
shown in Fig. A4. Detailed derivations are discussed elsewhere. 
for isotropic hardening (Chung and Richmond, 1993). When 
the deformation is under proportional true strain condition for 
the whole process, the resulting stress and strain are equivalent 
for all the combination types of the isotropic and kinematic 
hardening. 

E R R A T U M  

The paper "Contact Stresses in Cables due to Tension and Torsion," 

by K. Kumar, J. E. Cochran, Jr., and M. A. Cutchins, which was pub- 

lished in the December 1997 issue of the ASME Journal of Applie~ 

Mechanics (Vol. 64, pp. 935-939) incorrectly listed the third author as 

J. A. Cutchins. 
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A Geometrically Nonlinear Model 
for Laminated Composite Strips 
With Extension-Twist Coupling in 
the Presence of Delamination 
A geometrically nonlinear analysis 3"or the extension-twist coupling in pretwisted 
laminated composite strips in the presence of delamination is developed. Closed- 
.form solutions for strips with internal and edge delaminations are obtained. A para- 
metric study is performed to investigate the influence of delamination length, material 
system, and stacking sequence on the extension-twist coupling in a class of hygrother- 
mally stable laminates. The model predictions are in good agreement with test data. 
The results indicate that internal delamination has a negligible influence on the 
extension-twist coupling behavior while free-edge delamination could result in a 
significant drop in coupling. 

Introduction 
Elastic tailoring of laminated composites allows a unique 

flexibility to meet the design requirements efficiently and eco- 
nomically. Coupling of deformation modes, such as extension- 
twist and bending-twist, can be created in composite structures 
by an appropriate selection of material, geometry, and stacking 
sequence. Extension-twist coupling in laminated composite 
strips is provided by antisymmetric stacking sequences. Such 
laminates will twist when subjected to axial load. The test data 
show nonlinear axial force-twist dependence which is due to 
low torsional to extensional stiffness ratio. 

A review of geometrically nonlinear models for coupled com- 
posite beams without damage is provided in Hodges (1990). 
Most of the approaches are numerically based. Among recent 
publications, the work of Cesnik and Hodges (1997) is worth 
noting. In this work the variational-asymptotical method is used 
to dimensionally reduce a three-dimensional elasticity problem 
for a beam of arbitrary geometry and material properties. A 
two-dimensional cross-sectional analysis and one-dimensional 
beam problem are extracted from a geometrically nonlinear 
elasticity formulation. A finite element code for cross-sectional 
modeling was developed. A geometrically nonlinear shell-type 
model for extension-twist coupled laminates was developed by 
Armanios et al. (1996). The closed-form solution was in good 
agreement with existing theoretical results and test data. 

In order to implement elastically tailored composites in prac- 
tical applications such as fixed wing and rotorcraft structures, 
their damage tolerance needs to be assessed. One of the primary 
damage modes observed in test and service is delamination 
or separation of layers. Most of the published geometrically 
nonlinear analytical models, taking into account delamination, 
are related to stability issues, and are based on Von Karman's 
kinematic approach. To cite a few works, delamination buckling 
and post-buckling are treated in Simitses et al. (1985)and  
Kardomateas (1989). 
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To the best of the authors' knowledge there is no published 
closed-form solution which takes into account the influence of 
delamination on the nonlinear extension-twist coupling behav- 
ior of antisymmetfic laminates. To this end, a finite displace- 
ment model which accounts for delamination, is developed in 
this work. A closed-form solution for extension-twist coupling 
behavior of a pretwisted strip in the presence of an internal or 
an edge delamination is derived. 

Analysis 
Consider the laminated strip shown in Fig. 1. The thickness 

h of the laminate is small relative to the width 2b which is 
small compared to the length L. That is 

h < 2b < L. (1) 

The strip has a pretwist about the longitudinal axis X. Assume 
that the strains are small (negligible compared to 1 ) and inde- 
pendent of the longitudinal direction; the pretwist rate 00 and 
the elastic twist rate 0 are constant; and the material is linearly 
elastic. 

The strip has a midsurface symmetric internal or free-edge 
delaminations shown in Figs. 2 and 3, respectively. Accord- 
ingly, the strip is divided into two sublaminates, groups of plies 
above and below the delamination interface, denoted by indices 
1 and 2 in Fig. l. The middle surface of each sublaminate is 
referred to the material coordinates x and y, the transverse mate- 
rial coordinate is denoted by z as shown for the group of plies 
above the internally delaminated interface in Fig. 2. If the strip 
is fiat, the position vector of an arbitrary point of a sublaminate 
is defined as 

r r = x |  + y j  + zk 

h h 
O_~x_<L,  - b _ < y _ < b ,  - ~ _ < z _ < ~  (2) 

where |, j ,  k are the unit base vectors of the reference Cartesian 
coordinate system shown in Fig. 1. 

The position vector r0 of a material point in the initial state 
is derived in Armanios et al. (1996). The steps are discussed 
briefly in the following for convenience. First, a rigid cross 
section is rotated about the longitudinal axis of the strip. Second, 
the out-of-plane strains caused by the previous step are set to 
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Fig, 1 Laminate geometry 

zero by rotating a straight line element perpendicular to the 
middle surface of the flat strip. The result is 

( ooy 
r(o 1'2) = x ~1 + (Ooy) 2 Z ± | + Y620 

+ ~/1 + ( O o y )  2 z ±  ~3o (3) 

where 

e20 = cos 00xj + sin Ooxk, e30 = - s i n  Ooxj + cos Ooxk. (4) 

The superscripts associated with r0 indicate the corresponding 
sublaminate. The plus and minus signs are associated with 
sublaminates 1 and 2, respectively. These conventions will be 
used for convenience in the subsequent development. 

The position vector r of the material point in the deformed 
state is derived in the same way as in the initial state, except 
for a small displacement field which is added to account for all 
strain components 

( (Oo+O)y (z+~)+u(L.2))i 
r (1'z)= x - x / 1  + (0o+ O)2y 2 - 

+ (y + v(t'2))~ 2 

+ Z ~ + w ( t ' 2 )  e3 

1 + (0o + O)Zy 2 
(5) 

where 

62 = cos (00 + O)xj + sin (0o + O)x[~ 

63 = - s i n  (0 + 00)xj + cos (0o + O)x[~ (6) 

T 
Z 

, ) Y  
oi 

. . . . . . .  I~ 2a ', ~1 . . . . . . . . . . .  
i 

Fig. 2 Internal delamination and coordinate system 

Fig.  3 Free-edge delamination 

u (1'2) = eoX+ U(l'2)(y, z), v (1'2) = V(i'2)(y, z) 

w (1'2) = W ( m ) ( y ,  z)  (7) 

are the small displacement vector components. 
The Lagrangian strain tensor components are defined as (So- 

kolnikoff, 1964) 

2co. = go. - hij (8) 

where go. and ho. are the metric tensor components in the de- 
formed and the initial states, respectively, 

Or Or 0ro Oro 
go Oxg COX j ,  hij = O x  i O x  j 

(x I = x , x  2 = y , x  3 = z ) .  (9) 

The following limits are imposed on the maximum values of 
the kinematic parameters 

Ooh, Oh = O ( e )  

(Oob) 2, (Ob) 2 = O(e)  

OU OU OV OV cOW OW 
- -  = o ( e )  

Oy ' Oz ' Oy Oz COy Oz 

OoV, OoW, OV, OW = O(e 3/2) (10) 

where e is the maximum magnitude of strain. Terms of O(e 3~2) 
and higher will be neglected in the strain-displacement relations. 

For a thin strip the out-of-plane shear strains are replaced by 
their average values with respect to thickness 

Yyz = Yyz(Y), Yxz = Yxz(Y). (11) 

Moreover, nondeformability in the z-material direction is as- 
sumed 

ezz = 0. (12) 

According to Eqs. ( 3 ) -  (12),  the small displacement field 
components in Eq. (7) can be expressed as 

U(1, 2) = U(l,2)(y) - zU~l,Z)(y) 

V (1'2) = V0(I'Z)O')- zV[ l '2 ) (y ) ,  W (1'2)= Wgl'Z)(y) (13) 

and the engineering strain-displacement relationships become 

(1,2) ~ ( 1 , 2 )  _ _ .  (1,2) e U = ~o .  , ( i , j  = x , y )  

½( = = Go + 0 2 + 20oO)y 2, "xx~(l'2) 0 

0(I,2) "~z (1,2) ~(1,2) (1,2) 
E yy ~ v O,y ~ ,~ yy ~ V I,y 

(1,2) = 0 
zZ 

(1,2) = - V  }1,2) + , v,y yz W (1,2) 

7(1,2) = _U~1,2) 
xz 

Oh /0(1,2) rr(l,2) 7- . (1,2) rr(1,2) + 20 (14) 
xy ~ ~O,y T ' ~xy  ~ ~ l , y  

where partial derivatives are denoted by subscript commas, 
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Strips in the presence of a midplane symmetric internal de- 
lamination (Fig. 2) and a symmetric edge delamination (Fig. 
3) are considered. If necessary, the delaminated and undamaged 
regions of the laminate will be identified in the equations by 
superscript (d) and (u), respectively. If the displacements in a 
delaminated region do not satisfy the following condition 

W ~o ~)('~) -> W o (~)~"), (15) 

the identity 

W(0 ~)(d) = Wo (2)(a) (16) 

has to be enforced to avoid overlapping. Continuity of the dis- 
placements across the sublaminate interface in the undamaged 
regions is assumed. That is 

+ v g '  = - 

vo'"+gv = v g ) - g v ?  

Wo (l)(u) = W o  (2)(u) , (17)  

Continuity of the displacements in the sublaminates at the 
boundary 

a, internal delamination 

I Y I = y~ = b - a, edge delamination (18) 

of the delaminated and the undamaged regions is also imposed. 
Use Eqs. (13) to write this condition as 

l y l  = y ,  

[U0, Vo, Wo, U~, Vi] <~'2~"~ 

= [Uo, V0, W0, U1, Vii ~1'2~"~. (19) 

The equilibrium equations and boundary conditions for a 
cantilever strip subjected to an axial force F and a torque T 
are derived from the principle of virtual work. The following 
symmetry property considerably simplifies the analysis. 

The stress state and the displacement field for an antisymmet- 
ric laminate loaded by the axial force and the torque are sym- 
metric about the center O of the cross sections shown in Figs. 
2 and 3. Using this symmetry property, the principle of virtual 
work can be written as 

' dy (or°& U ~g)(k)dz 
k=l tl/4 

f y l  h/4 
+ dy ~ f ( o ° & ~  ~g)(k'dz 

1 k=l t J h / 4  

T 60 F&o 6W,,, 
- 0  

2 2 L 

( i , j  = x,  y ,  z)  (20) 

where a U are the second Piola-Kirchhoff stress tensor compo- 
nents. Summation over the repeated indices is assumed. The 
Jacobian 

0r0 (0 o Oro)= 
v a = - z -  " " \ x Oz ] 1 (21) 

if the terms of O(e) are neglected compared to unity. The last 
term in Eq. (20) represents the work of the surface tractions at 
the boundary y = 0 

6W,,, = - dx [(cr*Yi + ~rYY~2 
k=l -hi4 

+ o'YZ~3) "6mFa](l '2)  ly=Odz (22 )  

where r is defined in Eq. (5), and the quantity 

0ro 0ro 
~a = - ~ -  × Ox = 1 (23) 

according to the small strain assumption. Substitute the follow- 
ing symmetry conditions 

y = 0, (u, v, w)(')lz = ( u , - v , - w ) ( 2 ) l _  z 

( O'xy, o-YY, o'YZ)(l)[ z = ( - - G  rxy, 0 "yy, o 'YZ) (2) l -  z (24) 

into Eq. (22) to obtain 

6Wm = 0. (25) 

Internal Delamination. Consider the case of a strip with 
internal delamination (Fig. 2). Denote the forces and moments 
per unit length of the middle surface by 

(U=, Nyy, Qy, Qx, Uxy, M~,  Myy, M~y) (',2) 

f l hI4 (O "xx, o'YY Gr yz, o'xz 0 -xy, 
1/4 

ZO -xx, Z(T yy, zoXy ) ( l ' 2 )d z  (26) 

where the subscripts do not denote covafiant tensor components. 
Substitute Eqs. ( 1 4 ) -  (18), (21), (25), and (26) into the prin- 
ciple of virtual work (20), integrate by parts, use Eqs. (19) 
and (24), and reduce the resulting equilibrium equations and 
boundary conditions to 

= ~(1.2)(d) = 0 (27) "" xy IV( 1 )(d) ---- -- *, xyM(2)(d) const, . , yy  

W (o ~'2)(d) independent, (')(1.2)(d) = 0 (28) 

W ~ l ) ( d ) =  W (o2)(d), Q~I)(d) = _Q~2)(d) ( 29 )  

azr(1,2) Q~1.2) ] (d) 0, (1,2) ()(1) ](d) • tVlxy,y -- = [Myy,y + .~,...y j : 0 ( 30 )  

[Nxy, Nyy, Q~]O)(,) = -[N,y,  Nyy, Qy](2)<") (31) 

[ (  h (,)) _Q~,.2)] (") 
M~)y "2' + -~ Nxy = 0 

: O' 

[ (  hM(l)~-7-Q(yl) ] (") M~y.~ '2) + ~ ..yy ].y = 0 (32) 

y = 0  

[Uo, Vo, Wo, U,, V,] (~)~') 

= [U0, -Vo ,  --W0, - U i ,  Vl] (2)(d) (33) 

y = O, [Myy, M~] (l~('t~ = [-Mry , M<~] (21(a~ (34) 

y = a  

[Uo, Vo, Wo, U~, V~] (1'2)('1) 

= [U0, V0, Wo, Ui, Vl] (1'2)('~ (35) 

[ /~'4(1'2) ÷ ~ N~)  ] (d) I "7 h /V(1) ] (u) j 
y a, l_..= xy ""xy 

(d) h M(1) 
L,,.yy + ~--yy (36) 
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1(.) 
[/tg(L2) h )v(~ ~ = 0, y = b, k..-~y -l"~''xy 

7 (u) h . (,~ / 
M~, 'z) + ~ Alyy j = 0 (37) 

(k)(u) 2 N~(d~dy + Nxx dy = F (38) 
, k=l k=l 

{Ii ( [ 2 N ~  )(d) [00 + O]y 2 - 2 M(~y ~ + 
k=l 

+ N~ )(") [0o + O]y 2 
k= I 

The first condition in Eq. (28) signifies that the transverse 
displacements W(o ~ '~  and W o (2~d) in the delaminated region 
are independent. If the nonoverlapping condition (15) is not 
satisfied, Eqs. (29) have to be used instead of Eq. (28). 

Assume that the linear constitutive relations are given in local 
rectangular Cartesian coordinates. Although the base vectors 

0ro 0ro 0ro 
(40) 

Ox Oy Oz 

of the material coordinate system (x, y, z) in the initial state 
are not orthogonal, transformation to the orthogonal coordinates 
would introduce correction of O(e 2) to the strain field as shown 
in Armanios et al. (1996). 

Equation (12) implies that for each lamina 

E33 ~ ~, u13 = U23 = 0 (41) 

where E33, /.,13, and u23 are Young's modulus and Poisson's 
ratios associated with the transverse material direction. Indices 
1, 2, 3 denote the principal material axes. Therefore, the in- 
plane components of the lamina stiffness matrix are the same 
as for the plane stress state. 

Sublaminates with symmetric stacking sequences are consid- 
ered. Since the middle surface strains and curvatures for a sym- 
metric sublaminate are uncoupled, the constitutive relations can 
be written in the following form: 

= A,2 A22 ±A26 / Cry 
Nxy ±Ai6 ~A26 A66 .] 'Y~r 

M,~ D12 D22 ±D16] - K~ 
Myy = D12 D22 -+026 / Kyy 
Mx, ±D16 ±D26 D66 J t~xs) 

{ Qy~(I'2)=[A44 ±A45]~yzt(l'2)" 
Q~ J ~A45 A55 J ( Y~z J 

(42) 

The stiffness parameters are defined as 

;;4 (Aij , DO) = (Q,j, Qijz2)(l)dz (43) 

where 0o are the components of the lamina stiffness matrix in 
the (x, y, z)-coordinates (Vinson and Sierakowski, 1986). 

One can substitute Eqs. (14) into the constitutive relations 
(42), and finally write all differential equations and boundary 
conditions in terms of displacements. The system can be re- 

duced to two uncoupled sets of differential equations and bound- 
ary conditions in terms of sum and difference of displacement 
parameters. The results of solving the system are provided be- 
low. 

Introduce the following notation 

( )~+~=( ) ( ~ + (  )(~, ( )~-~ 

= ( )(1~_ ( )(2~. (44) 

The axial strain eo and the elastic twist rate 0 can be determined 
from Eqs. (38) and (39) written as 

{fo f: } 2 N~)(d)dy + N~)(")dy = F (45) 

a 
(+)(d) (+) My 

ff ~ {M(+)(u) rio + ~, . . . .  [~'0 + O]Y 2 

- 2 M ~  ~ + ~ N ~ ;  ~ dy = T (46) 

where 

[0/,__~ 1 ,~2 
N(xx +)(a) = 0/1112e0 + (0 2 + 20oO)y 2] + °q210/22/3 tv 

+ 20°0)(a2 - 3Y2) - 4 a 

N(xy)(d)=oM (l)(d) [ 2e 0+  1 ] --''xy = 0/12 3 ( 02  -1- 20o0) a2 

h ( U]+~(d~la + (47) 
--  0/22 ~ a 

/M(-)..xy -- -..xygM(D LOq2 0~22 _ 4 (rr(+)(u) ± A~a I 

(48) 

= ' '  U (+~ 40J (49) M~ff) L D26 D66 3 L -- l,y --  

and 

A ~2 Ai2A26 
all = All -- A2---~ ' a12 = Ai6 A22 

A226 A415 
0/22 = A66 - a2---~ ' /3 = A55 - a4-~ " (50) 

The solution for the displacement parameters in the delaminated 
region is 

U~ +~('l~ = Bt sinh D66 - D~6/D22 y 

V~-~(d) = - B ~ s i n h  66-  DZ6/D22Y + B2y (51) 
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if the condition 

£ ' (  --A45u~+)(d))dy> 0 
W 0 (-)(d) = - V I -)(d) + A44 (52) 

is satisfied in the delaminated region. Otherwise 

1 1 v l - ) J  =B1 D26r],-A45 sinh ~ l y  

D22~l A44 J 

l t + B2 D26~72 - .445 sinh , /~y  (53) 

D22~2 A44 d 

where rh and r h are the roots of the following characteristic 
equation: 

( 0 2 2 7  -- A44)(D66~ - A55) - (D267~ - A45) 2 = 0, (54) 

The displacement parameters in the undamaged region are given 
by the following expression: 

1 

V l-)J = Dz6rl3 - A45 (B3 sinh @ 

D22~3 -- A44 

+ B4 c o s h  , ~ y )  

1 t 
-]- D26~4 -- A45 (Bs sinh @ 

D227]4 A44 J 

+ B 6 c o s h , j ~ y )  + ~--~-(0 2 + 20oO)y (55) 

LA44J 

where r/3 and r/4 are the roots of 

(D2277 -A44)(ID66 q- (~)20L22] ~ -A55) 

-- (D26 ~ - A45) 2 = 0. (56) 

The constants B~ can be obtained from the following boundary 
conditions: 

y = a, U~ +)(d) = U~ +}("), V ~-){a) = V j-)(") 

M~; ) + ~ N ~ ; )  = M~; ) + ~ N ~ )  

M~;)(d) = M~)(") 

( M  (+) Nil) y = b , \ . . - x y  + =0,  M~;, )(") = O. 

(57) 

(58) 

It is worth noting that for the case of no delamination (a = 
0), the solution is represented by Eqs. (55) with constants B 4 
and B6 set to zero according to symmetry, and the remaining 
constants determined from Eqs. (58). 

The only nonzero interlaminar shear stress is 

txz ---- ~j(l){u) a12(0 2 + 2000)y h rr(+)(,,) (59) " , x y , y  ~ -- 1~2~22 ~ ~l,yy • 

If the applied torque T is equal to zero, the following axial 
force-twist relationship can be obtained 

F(bl - 0 o -  O) 

4 = ( b z + g b 3 0 o +  2b40~))0 + (b3 + 3b40o)02 +b403 (60) 

where the constants b~ are defined in terms of the cross section 
thickness, width, delamination length, and the stiffness parame- 
ters A,.j and D~j. The influence of internal delamination on the 
axial force-twist relationship is negligible as shown in the Appli- 
cation section. On the other hand, the free-edge delamination 
has a significant effect on the extension-twist coupling. An ex- 
plicit form of the coefficients in the axial force-twist relationship 
for the case of free-edge delamination is provided in the follow- 
ing section. 

Free-Edge Delamination. The procedure tbr solving the 
problem for a strip with free-edge delamination (Fig. 3) is 
similar to the one provided in the previous section for internal 
delamination. However, the equilibrium equations and bound- 
ary conditions are modified according to the principle of virtual 
work. Equilibrium Eqs. (27) change to 

N(l,2)(d} -~ /V(1,2)(d) .~ 0 (61) 
x y  ~ , y y  

and boundary conditions (36) and (37) become 

M(l,2)(d) [ (I,2) 4 Jh/V(1 ) ] (u)  y = b -  a, ...,y = Mxy + 7"'xy . 

[ h l  ""YYA'4(1,2)(d) : M~J,,2) + 4 N~,  ) (") (62) 

y = b, M(l'2)(d} = ~l/[(l'2)(d) = 0. 
" ' = x y  " ' = y y  

The extension-twist relations (38) and (39) become 

2 (+){") {+)(d} Nxx d y +  N.,~ = F  
a 

(63) 

(64) 

- [ (+) 2 { f i ' " ( N ( £ ) ( " ) [ O o + O ] y Z - 2 L M x Y  +~N(~y}]{"))dy  

£ } . . . . .  _ . .  . - ( + ) ( , l )  ~ . t . ,  = T ( 6 5 )  + (M(+)(d) [00 + O]y 2 Zlglxy )uy 
- -a  

where the constitutive relationships for the stress resultants are 
provided in Eqs. ( 4 7 ) -  (49), except for N~)('l) which changes 
to 

a~--!] [2Co + (02 + 20o0)y2]. (66) N(+){d)= al l Ct~22 , ] 

The following expressions represent the solution for the dis- 
placement parameters 

g I- ) J = Dz6rh - A45 C1 sinh @ 

D22rb - A44 

1 t 
+ D26~4 -- A45 C2 sinh @ 

D22~4 A44 J 

-t- A45 ~ - ~ -  ( 02 + 20oO)y (67) 

L A 4 4 J  
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Table 1 Properties of T300/954-3 graphite/cyanate mate- 
rial system 

EH = 135.6 GPa, E22 = 9.9 GPa 
G12 = G13 = 4.2 GPa, G23 = 2.5 GPa 
u~2 = 0.3 

T a b l e  2 P r o p e r t i e s  o f  $ 2 / F 5 8 4  g l a s s / epoxy  m a t e r i a l  s y s t e m  

Ell = 44.1 GPa, E2z = 12.4 GPa 
Gi2 = G=3 = 4.46 GPa, G23 = 4.14 GP a  
u12 = 0.29 

whe re  73 and  74 are the  roots  of  Eq. ( 5 6 ) .  The  so lu t ion  for  the  
de l ami n a t ed  reg ion  is 

U~+)(d)= C3sinh(~D /~ ) 
66 - D~6/D22 y 

= - D2---~ 66 - D~6/D:2 y 

+ 4coshl,/D 1/ 66 - D~a/D2z y + Csy + C6 

if  the  cond i t ion  

fy( 
W 0 ( ) ( ' ~ )  = b - .  V I - ) ( ~ )  

A45 U~+)(d))  dy 
+ A,--~ 

- > 0  

is satisfied. O the rwise  

V ~ - ) J  _ 02671  --  A45 

Dzz71 A44 J 

--~ C 4 c o s h  ~y) 

_ D2672 - A45 

D2272 A44 

(C3 s inh , f ~ y  

(Cs s inh  ~-2Y 

-~- C6 Gosh ~2Y) 

( 6 8 )  

( 6 9 )  

( 7 0 )  

14 

12 

10 

~6 
uJ 

Full solution, no damage, 
internal delamination 

Full solution, 25% free-edge 
~ . ~  delamination 

---o--- Full solution, 50% free-edge 
delamination 

• .--o--- Full solution, 75% free-edge 
delamination 

. E / ~ " ~ /  _ / - - S i m p l i f i e d  model, no 
damage 

~ " ~  ~ . . . .  Simplified model, 250 
/ / /  . . ~ = . . ~ . : o  damage 

/ / /  ~ . : . O  : ' ' ~ ' ' ' ~ v  . . . . . . .  Simplified model, 50% 
r . ~ ' / ,  f -  damage 

~ . . . . .  Simplified model, 75% 
f . damage 

I I I I I 
0.2 0:4 0,6 0.8 1 

Axial force [KN] 

Fig. 4 Axial force-twist relationship for 20-deg glass/epoxy laminate 

16 

14 

12 

.~ 8 .  

t.u 
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0 

Fig. 5 

- - . 0 - -  Full solution, no damage, 
internal delamination 

Full solution, 25% free-edge 
delamination 

Full solution, 50% free-edge 
delamination 

Full solution, 75% free-edge 
delamination 

Simplified model, no damage 

. . . .  Simplified model, 25% 
damage 

. . . . . . .  Simplified model, 50% 
damage 

. . . . .  Simplified model, 75% 
damage 

I I I I I 

02 0.4 0,6 0.8 1 

Axial force [KN] 

Axial force-twist relationship for 20-deg graphite/cyanate laminate 
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2.5 . . . . . . .  No damage 

2 • 2b > 

0.5 

0 I 
..... 876 o.~ o.s 0,9 

-0.5 
y l b  

Fig. 6 Interlaminar stress t~z distributions in 2O-deg graphite/cyanate 
laminate at 1 KN axial force 

where 

2b ( o,1 5>o,, ) 
64 = ~ -  9 5~.(3> 

a a~2 

b a22 
, ~12 = 1 - -  ~ Oll2 

( I  ~11(3) = ~ l l  --  1 - 1 - 
O~22 

= O,l- (,- [,- ;,]') 

(73) 

(74) 

where rh and r72 are the roots of Eq. (54).  The constants Cs 
can be determined from the following boundary conditions: 

y = b -  a, U~ +~(dl = U~ +}(">, V{-)(d) = V} ~("1 

M(+)(a> (M,~)  + h )(" ' ,  M~;'('t) = M ~-)('' (71) x y  = ~ N}~; > ,. . . -  y y  

y = b, ...~yJVt (+)(d) = M~.~? )(d) = 0. (72) 

When the applied torque T is zero, the form of the axial force- 
twist relationship is still represented by Eq. (60).  However, the 
coefficients bs are different. The interlaminar shear stress in the 
undamaged region is given by Eq. (59).  

The limiting case of full delamination, (a = b),  can be de- 
rived as follows. Substitute Eqs. (68) or (70) into the symmetry 
relations U~+)(0) = V } )(0) -- 0 and the boundary conditions 
(72) to obtain the solution for U] +~ and V }-). The coefficient 
b~ in Eq. (60) will vanish indicating absence of extension-twist 
coupling at zero pretwist. 

The Kirchhoff-Love assumption of no transverse strains 
allows for extremely simple expressions for the coefficients b~ 
in the axial force-twist relationship (60).  They are given by 

6~12 48(~11~22 -- ~ 2 )  
- -  , b 2  = 

bl b2~11(3) b~H(3) 

b3 = 12a 2 -  ~ 2  o~H - -  , 
~ I I ( 3 )  ~22 / 

and o~j are defined in Eqs. (50).  Although neglecting the trans- 
verse shear strains would result in violation of the boundary 
conditions at the free edges and the delamination front, the 
global behavior is modeled correctly even for large delamina- 
tion as shown in the Application section. 

Application 
The influence of delamination on the extension-twist coupling 

is investigated for strips made of two practical material systems, 
$2/F584 glass/epoxy and T300/954-3 graphite/cyanate, with 
properties given in Table 1 and 2. The first material system 
provides a Young's  modulus ratio E,/E22 of 3.6 while the 
second, a value of 13.7. The length, the width, and the thickness 
of the laminates are 254 ram, 26 mm, and 1.2 mm, respectively. 
The hygrothermally stable antisymmetric stacking sequences, 
[ol2/(ol -- 90)4/O~2/--C~2/(90 - Og)4/--O/2] , are considered. This 
class of laminates, proposed by Winckler (1985),  will not warp 
as result of changes in temperature or moisture. If other antisym- 
metric lay-ups were used, the residual stresses associated with 
the curing cycle would have to be accounted for. The effect of 
curing stresses on the extension-twist coupling could be signifi- 
cant, it is discussed for undamaged strips in Makeev et al. 
(1998). 

In applying the present analysis to the damaged strips it was 
found that assuming an opening mode with independent trans- 
verse displacements in the delaminated region or enforcing 
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. . . . .  Simplified model, 75% 
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I I ---- 
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. . . . .  r,-~'~, , ~ . ~  - - ~ , ,  tx Full solution. 25% free- 

,, ",o, P edge delamination 
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Fig, 7 In f luence o f  delamination on coupling for glass/epoxy laminates at 1 KN 
axial force 
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Fig. 8 Influence of delaminaUon on coupling for graphite/cyanate laminates at 
1 KN axial force 

equal transverse displacements throughout the delaminated 
faces results in indistinguishable difference in predictions of the 
axial force-twist relationship and the interlaminar shear stresses. 

The axial force-twist relationship (60) is plotted in Figs. 4 
and 5 for internally and free-edge delaminated a = 20-deg strips 
([202/-704/202/-202/704/-202] stacking sequence). Predic- 
tions of the model based, on the no-transverse-strains assump- 
tion, which results in expressions (73) for the coefficients in 
the axial force-twist relationship, are labeled as Simpl i f i ed  
model.  The following three observations are worth noting. 

First, the axial force-twist relationship is clearly nonlinear. 
Second, the internal delamination does not affect the extension- 
twist coupling, the relative difference in predictions of the full 
solution between the undamaged and 75 percent internally de- 
laminated strips is found to be less than 0.2 percent. Indeed, the 
interlaminar stress t~z distribution, which controls the extension- 
twist coupling in the strip through the magnitude of the shear 
couple ~v<l) = -lv(2) is negligibly influenced by the internal * , x y  * , x y  , 

delamination (as long as the thickness to width ratio of the 
undamaged regions remains small). This is shown in Fig. 6 
where t,~ distributions are plotted ahead of the delamination 
front for an axial force of 1 KN in an undamaged and 50 percent 
internally delaminated a = 20-deg graphite/cyanate strips. 

- -  Simplified model, 
16 • graphite/cyanate 

r""~"--~e......~ . . . . . . .  Simplified model, 
14 ~ glass/epoxy 

. ~ o Full solution, 
12 ' ~ A  . . . . .  ~ graphite/cyanate 

- A . . , . ~ , , .  " ~  & Full solution, 
'~ 10 =",..&.. X~X glass/epoxy 

0 I I I - 
0 0.2 0,4 0.6 0.8 1 

a / b  

Fig. 9 Comparison of full and simplified solution predictions for 2O-deg 
laminates with free-edge delamination at 1 KN axial force 

Unlike internal delamination, the fi'ee-edge delamination re- 
sults in a significant drop in coupling compared to the undam- 
aged case. This is explained by observing that the solution for 
a strip with free-edge delamination can also be obtained from 
the equilibrium equations and boundary conditions for the un- 
damaged strip if the delaminated region is characterized by zero 
in-plane shear forces .,xy ~ '2~  , and continuity of the displacement 

M ~+~ + h/4N~y ~ and parameters U{ +~, V }-~, and the moments .,-xy 
M~yy ~ per unit length of the middle surface of the strip is as- 
sumed throughout the laminate. Vanishing in-plane shear forces 
in the delaminated region reduces the extension-twist coupling 
compared to the undamaged case by affecting the distribution 
of the twisting moment and the axial force per unit length of 
the middle surface of the strip. 

The second observation holds for strongly as well as weakly 
coupled laminates as shown in Figs. 7 and 8 where the absolute 
values of the end twist angle at an axial force of 1 KN are 
plotted versus the ply angle a for both material systems. Exten- 
sion-twist coupling vanishes for c~ = 0, 45-deg and 90-deg 
angles, and is maximum for c~ = +26 deg for glass/epoxy and c~ 
= _+28 deg for graphite/cyanate both damaged and undamaged 
laminates. 

Third, Figs. 4, 5, 7, and 8 show that the full and the simplified 
solution predictions are in close agreement. The complete free- 
edge delamination range is considered in Fig. 9 where the abso- 
lute values of the end twist angle are plotted versus the free- 
edge delamination length normalized with respect to the cross 
section width for c~ = 20-deg strips subjected to a 1 KN axial 
force. Both models illustrate the same trend despite the fact that 
the simplified model does not accurately predict local effects 
such as interlaminar stress concentration at the delamination 
tip, and free-edge boundary conditions. Based on this observa- 
tion, one can conclude that an accurate (singular) stress field 
at the delamination tip is not needed for a correct prediction of 
the global axial force-twist behavior. 

The accuracy of the axial force-twist relationship (60) is 
assessed through comparison with test data for a = 20-deg 
strips made of T300/954-3 graphite/cyanate material system. 
Four undamaged specimens, four specimens with 50 percent 
internal delamination, and three specimens with 50 percent free- 
edge delamination were tested. The dimensions were 254 × 
25.4 × 1.17 mm for the undamaged and internally delaminated 
strips, and 254 × 26.0 × 1.20 mm for the strips with free-edge 
delamination. The strips had an end pretwist angle of 5 deg. 
The manufacturing and testing programs for undamaged strips 
are described in Armanios et el. (1996). The damaged speci- 
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Fig. 10 Comparison of model predictions with test data for undamaged and 50 
percent internally delaminated strips 
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Fig. 11 Comparison of model predictions with test data for strips with 
50 percent free-edge delamination 

mens contained one 12.7-mm wide internal or two 6.5-mm wide 
free-edge midplane delaminations. Teflon FEP film was used 
to simulate the delamination and was placed along the full 
length of the specimens. The testing was performed in an Instron 
testing machine using the patented rotational displacement ap- 
paratus (Hooke and Armanios, 1997). This apparatus uses air 
as a bearing medium in order to allow for free end twist as the 
axial load is applied. 

The test data and analytical predictions of the axial force- 
twist behavior are compared in Fig. 10 for the undamaged and 
internally delaminated strips, and in Fig. 11 for the strips with 
free-edge delamination. The maximum test load was kept low 
in order to avoid any delamination growth. The test data are 
labeled as Specimen 1-Specimen 11 in the figures. As expected, 
the internal delamination does not affect the extension-twist 
coupling while the free-edge delamination results in significant 
drop in coupling compared to the undamaged case. For the free- 
edge delaminated strips the analysis predicts a 14.7-deg end- 
twist angle at the maximum test load of 1.112 KN, while the 
average test data is 13.5 deg. The correlation coefficient, r 2, 
for the closed-form solution is 0.989 with the free-edge delami- 
nation data. The end-twist angle corresponding to the undam- 
aged laminate is 17.8 deg with a correlation coefficient of 0.995. 

Conclusion 
A geometrically nonlinear model for pretwisted laminated 

composite strips with extension-twist coupling in the presence 
of delamination is presented. A closed-form solution is ob- 
tained. The axial force-twist behavior is investigated for a class 
of antisymmetric hygrothermally stable laminates made of two 
material systems with various internal and free-edge delamina- 
tion lengths. The results indicate that internal delamination has 
a negligible influence on the extension-twist coupling while 
free-edge delamination could result in a significant drop in cou- 
pling. The accuracy of the developed model is assessed through 
comparison of the axial force-twist relationship predictions with 
test data for strips made of a graphite/cyanate material system. 
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The Effect of Dynamic Surface 
Tension on the Oscillation 
of Slender Elliptical 
Newtonian Jets 
We investigate free-surface oscillating jets with elliptical cross section, focusing 
on behavior associated with decaying surface tension. Previous one-dimensional 
equations for  an oscillating jet  are extended to allow variable surface tension on 
short space and time scales relevant for  surfactant mixtures. We presume the decay 
of  surface tension as a function of  surface age, and derive the resulting jet  behavior. 
Three plausible forms of decay are studied: an exponential decay, a diffusion model 
derived in Brazee et al. (1994), and an algebraic form due to Hua and Rosen ( 1991 ). 
Our simulations suggest both experimental regimes, and measurable jet  features in 
these regimes, which may be exploited in an inverse formulation to deduce the 
unknown rapid surface tension decay of  a given surfactant mixture. In particular, we 
establish numerical relationships between the amplitude and the wavelength of  either 
a sustained far-field oscillation or oscillation at a fixed downstream location and the 
entire history o f  surface tension decay. These numerical relationships are ideal for 
the inverse formulation, in that the complete surface tension evolution may be deduced 
solely from far-field o1" downstream jet  measurements, away from the confined part 
of  the je t  where the surface tension is rapidly changing. 

1 Introduction 

To model and understand agricultural and industrial processes 
such as spraying, fiber spinning, and film blowing, it is neces- 
sary to resolve the sizable and rapid change of material proper- 
ties over small time and distance scales. The surface tension of 
pesticide solutions in air varies with surface age, from an initial 
value near that of pure water (72 dyne cm -j)  when the surface 
is created to an equilibrium value as low as 20 dyne cm 1 at 
70 ms. Significant decay in surface tension occurs in the first 
2 -5  ms, which coincides with the timescale of drop formation 
and atomization (Thomas and Potter, 1975; Brazee et al., 1994; 
Reichard et al., 1997). Since surface tension dominates the 
hydrodynamic instability leading to droplets, accurate methods 
for the determination of surface tension on submillisecond 
timescales are necessary; slow or static techniques such as the 
Du-Nouy ring (Lunkenheimer and Wantke, 1981 ) yield only 
the equilibrium surface tension. 

Measurements of oscillating free-surface jets have long been 
used in inverse problems to deduce surface tension (Rayleigh, 
1879; Bohr, 1909; Hansen et al., 1958; Delay and Hommelen, 
1958; Thomas and Potter, 1975; Bechtel et al., 1995). An exper- 
imentalist can prepare conditions (specified in the text below) 
under which a fluid exiting an elliptical orifice establishes a 
steady jet with a chain-like free surface fixed in space: the jet 
cross section oscillates in the downstream direction between 
perpendicular ellipses (Rayleigh, 1879). This jet flow is elonga- 
tional. Features of the steady free-surface profile, such as the 
local wavelength of the oscillation, can be conveniently mea- 
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sured and are strongly tied to the local interracial surface ten- 
sion. 

The oscillating jet technique is the only experimental tool for 
the measurement of dynamic surface tension both on the rapid 
time scales and in an elongational flow relevant to industrial 
and agricultural processes of spraying, fiber spinning, and film 
blowing. To exploit the technique, one combines measurements 
of the oscillating jet profile with an analytical model that gov- 
erns the evolution of the jet cross section for prescribed material 
properties; material coefficients are then determined so that the 
model and experiment agree. Importantly, all previous models 
predict oscillating jet behavior under the assumption that surface 
tension and viscosity are constant in the spatial interval over 
which measurements are taken. These models quantify the de- 
cay of surface tension only on the resolution of a wavelength 
of oscillation; for typical flow rates and orifice sizes, this results 
in an averaging over a time interval of 1.5 to 2 ms, during 
which the surface tension can drop 20-30 percent (Brazee et 
al., 1994). 

This paper provides the model formulation necessary to re- 
solve dynamic surface tension within a wavelength and on sub- 
millisecond time scales. We assume a surface tension decay as 
a function of surface age is given; three different surface tension 
decay forms are studied. To implement the inverse formulation 
of the model in conjunction with oscillating jet experiments, one 
must (i) identify physical regimes and corresponding models 
specific to those experimental regimes, and (ii) establish fea- 
tures of the models which can be reliably measured and which 
can be inverted to characterize the surface tension form and 
decay parameters. To prepare for the inverse formulation, this 
paper identifies the regimes, thereby dictating how the experi- 
ment is to be designed, and further provides numerically gener- 
ated relationships between the decay parameters and the free- 
surface profile of the oscillating jet. In particular we find that 
the complete evolution of surface tension, from its initial value 
at the nozzle exit to its stabilized equilibrium value, can be 
deduced solely from far-field wavelength and amplitude mea- 
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surements, or measurements at a fixed downstream position. 
Although this is accomplished specifically for the three forms 
of surface tension, the methodology applies for any surface 
tension decay form that may emerge from fundamental studies. 

2 O n e - D i m e n s i o n a l  M o d e l s  f o r  t h e  O s c i l l a t i n g  J e t  

The fluid is assumed incompressible, and flows in the direc- 
tion of gravity g. We define space-fixed (Eulerian) Cartesian 
coordinates x = (x~, x2, x3) with corresponding unit base vectors 
et, e2, e3 such that the e3 direction coincides with the centerline 
of the jet. We assume the jet cross section is elliptical for several 
oscillations; the free surface of the jet is therefore posited in 
the form 

x~ x~ 
- -  + - -  1 = 0, ( l )  
(I)2(X3, t )  (I)2(X3, t) 

where ~ (x3, t) and ~2(x3, t) are the principal semi-axes, coin- 
cident with the x~, x2-axes. (An estimate for inviscid fluids of 
the inherent error in this assumption is given in Bechtel et al. 
(1995).) 

Recall that the oscillating jet experiment we are modeling 
here is steady in the Eulerian sense. In the steady case ~ and 
• 2 in ( 1 ) are functions only of x3. However, in Eqs. ( 1 ) through 
(15) we retain time dependence in the problem formulation, in 
anticipation of future stability studies; after (15) we suppress 
time dependence to model the steady experiment at hand. 

Also, this paper is part of an overall effort in material charac- 
terization which requires the ability to model non-Newtonian 
viscosity. Hence in this derivation we allow for variable viscos- 
ity, 

I" = 2rl(x, t )D,  (2) 

even though in this paper we on ly  present solutions in the 
Newtonian special case. In (2) T is the determinate part of the 
Cauchy stress tensor t - pI ,  D is the symmetric part of the 
velocity gradient, and r/(x, t) is the viscosity. 

On the free surface ( 1 ) the kinematic boundary condition is 

Ot + V ' V  \~2(x3,  t--------) + ~ ( x 3 ,  t----------) 

and the kinetic boundary condition modeling the surface tension 
(Edwards et al., 1991; Milliken et al., 1993) is 

(Tambient  - -  ' r  + p I ) n  = aKn - VsCr. (4) 

In (3),  v is the velocity and V is the Eulerian gradient; in (4),  
Tambient is the Cauchy stress tensor in the ambient atmosphere, 
n is the outward normal to the free surface, cr is the surface 
tension of the fluid/ambient interface (assumed to vary only 
with axial length x3 and time t), K is the mean curvature of the 
free surface, and Vsa is the gradient operator on the free surface 
defined by (Stone and Leal, 1990), 

V ,a  = (I  - n @ n)Vcr. (5) 

We assume the ambient is passive, so that the stress of the 
ambient atmosphere is 

Tambien t = - p , I ,  (6) 

where Pa is a constant pressure. As speeds increase in the experi- 
ment, assumption (6) becomes inadequate, and must be re- 
placed with an empirically derived air drag model (e.g., Kase 
and Matsuo, 1967). 

We employ the slender-filament perturbation theory de- 
scribed in Bechtel et al. (1995). We recall those features neces- 
sary to connect models with experiments. The small parameter 
is the slenderness ratio e, 

r0 
e = --  ~ 1, (7) 

Z0 

where ro and zo are typical length scales in the jet cross section 
and in the axial direction, specifically selected at the end of this 
section. The Eulerian coordinates & ,  x2, x3, t and transverse 
flee-surface semi-axes ~ and ~2 are scaled using the above 
characteristic length scales and a characteristic time scale to: 

xl = rox,  x2 = roy,  x3 = ZoZ, t = toT, 

~b,(x3, t) = roqbl(z, r ) ,  ~2(x3, t) = ro~2(z, r ) ,  (8) 

where x, y, z, r and &~, ~b2 are dimensionless. The velocity to 
leading order is assumed to be of the form 

ZO 
v = - -  { [ e x ~ . ( z ,  r )  + O(e3)]e, + [ e y { 2 ( z ,  r )  

to 

+ O(e3)]e2 + [ v ( z ,  ,7) + O(e2)]e3}, (9) 

where ~ ,  ~2, v are dimensionless O( 1 ) functions of axial coor- 
dinate z and time r.  

The kinematic boundary condition (3) and incompressibility 
constraint yield the leading-order equations 

q~l,r "1- 1)~/)l.z --  ~1~1 -'~ 0,  

4,~., + v,b:.z - 4 , ~  = 0, 

~l + ~2 + U . z = 0 ,  (10) 

where " , z "  denotes differentiation with respect to z, and " , r "  
with respect to r .  

The three-dimensional vector momentum equation 

p + v ' V v  = V " I ' -  Vp + pg, (11) 

is reduced to one-dimensional scalar equations by integration 
over the jet cross section and use of the kinetic boundary condi- 
tion (4).  In nondimensional form these equations are 

B ( P  - 2Z~,~b2~,) + ~'~:Kc-w e2~:wW~';Y~ 

4 

(/~131~2 (~ l . r  Jr- V~l,z + ~12) --~ O ( E 2 ) ,  
4 

B ( P  - 2Z~1~2~2) + K , -  ~%,~-=-~-~ 
W ' W E 

4 

4 

E2 1 Wz f2~ 1 
(4,,,/,~,zK~ + 4,~4<~Kc) - d -~q ao S (4,~ cos ~ o 

+ ~ sin 20)dO + Be:(24~lO2Z~v= + 24)~4)2Zv,= - P )  

1 
+ ~ 4~14,: = (v.T + vv.04,,4,2. (12)  
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The dimensionless parameters and functions in (12) are 

B = t~fo 1 (Z, T) = a(Z, T)t_________~, 
pro 4 '  W pro 3 

W: cr.~(z, r ) to  2 
W--- ~ (z,  r )  = prg ' 

- = - - , 1  gt~ Z(Z, r )  = ~(z,  r ) r ~  , 
F Zo tofo 

rl,z ( Z , r ) r o z 
Z.z(z, r )  = , (13) 

toil 

where f0 is a characteristic force scale, to be made explicit along 
with the other characteristic scales later in this section. Note 
that 

BZ = rl(z, ?-)to = _1 (14) 
pr~ R ' 

where R is the Reynolds number. The nondimensional pressure 
resultant P and functions Kc, K ,  Yc, Y~, and A are defined by 

P = @o f f (p - p°)dxtdx2, 

Kc l f f  ~ = -- roe COS 20dO 
7r 

_ 4',_¢~ ~ cos ~ 0 
7r Jo (~bl 2 sin ~ 0 + ¢~ cos z 0) 3/2 dO + O ( e 2 ) ,  

= - roar sin 20dO 
71" 

';b1¢2 fz~ sin 2 0 
- ~ oo (¢~ sin 2 0 + ¢z 2 cos 2 0) 3n dO + O(1~2) ,  

1 .If ~ (4l~2.z sin 2 0 + ~bz~bl.~ cos 2 0) gc 
. ,  (¢~ sin z 0 + q52 z cos 2 0 + O(e2)) m c°s20dO, 

1 1,2~ (¢t~bz.z sin 2 0 + 42~bl.z cos / 0) sin2 Y, OdO, 
• 7r J0  (¢~ sin 2 0 + ~b9 z cos20 + O(e2))  tn 

A = (qS~ cos 2 0 + q52 sin 2 0 + O(e2)) m. (15) 

We now suppress the time dependence in the governing Eqs. 
(10) and (12),  to model the oscillating jet experiment. In the 
steady problem we select the characteristic radial length scale 
ro to be the geometric mean of the initial principal radii of the 
elliptical cross section, and the characteristic axial velocity zo/ 
to to be the axial nozzle velocity, dictated by the experiment. 
This translates to dimensionless upstream conditions 

~b~(0)¢2(0) = 1, v(0)  = 1. (16) 

The steady forms of (10) imply 

~1 = ol~l'z ~2 --  o~b2'z 1)q~1(/2 2 = 1, (17) 
¢1 ' 4,~ ' 

where the constant in Eq. (17)3 is fixed by the upstream condi- 
tions (16).  

The remaining leading-order equations follow from the 
steady forms of (12),  in which we have retained the leading- 
order contributions within each physical effect, namely viscos- 
ity (BZ) ,  viscosity gradient (BZz), surface tension ( W - t ) ,  sur- 
face tension gradient ( W J W 2 ) ,  constraint pressure (BP) ,  iner- 
tia ( 1 ), and gravity (F-S) .  In a particular experiment some 
subset of these effects will be dominant, and thus survive in 
the leading-order dominant-balance equations. A regime of jet 
behavior is determined by the order of the full set of nondimen- 
sional parameters (13),  relative to the slenderness ratio e, in 

the physical experiment being modeled. Once identified, each 
regime then specifies the dominant asymptotic balance in Eqs. 
(12).  

In order to observe an oscillating jet in an experiment, one 
must design the experiment so that inertia and surface tension 
dominate to leading order in the transverse momentum Eqs. 
(12)~.2. Viscosity must either balance surface tension and inertia 
(which leads to attenuation of the oscillations), or be a weak 
effect (so that the leading-order behavior is inviscid). The con- 
straint pressure term plays a fundamental role in our asymptotic 
analysis; this term must balance the right-hand sides of (12)1.2 
(inertia terms) and the surface tension terms. Unless the dimen- 
sionless parameter B = tZfo/pr 4 is O(1) ,  we cannot deduce a 
consistent slender oscillating jet model. This constraint there- 
fore selects the characteristic force, fo, in terms of the radial 
scale (ro), time scale (to), and density (p) :  

pr 4 
f ° =  t ~ '  (18) 

or equivalently, we impose B --- 1. 
From analysis of the transverse momentum Eqs. (12)1.2 

above, we impose B = 1 and the experiment must be such that 
W -1 is O( 1 ), while Z is at most O( 1 ). Note that in the slender- 
ness scaling these conditions automatically imply that inertia 
dominates surface tension and viscosity in the axial component 
of momentum (12)3. Hence, a jet cross section evolves down- 
stream either with constant axial velocity (v.z = 0) if F ~ is 
less than O(1) ,  or with the free fall velocity (vvz = 1/F)  if 
F -1 is O(1) .  

We now posit specific regimes of oscillating jet behavior, 
and investigate the effect of variable surface tension as predicted 
by the leading-order equations. 

3 Oscil lating Jets With Noncons tant  Surface Tens ion  

Recall there are a priori four independent  scales r0, zo, 
to, and fo which characterize a given experiment. We have 
specified the force scale fo in terms of ro, to in (18)  in order 
to insure that the regime is oscillatory, with the correct bal- 
ance in transverse momentum.  The remaining scales, which 
depend on the experimental  conditions, dictate if viscosity, 
gravity, etc., jo in  surface tension and inertia as leading-order 
effects in the oscillating jet. 

Regime  1: Surface  Tension and  Inert ia-Dominated  Jets. 
We first model a fluid jet with the density, viscosity, and initial 
surface tension of water (p = 0.997 g cm -3, ~7 = 1.00 × 10 -2 
g c m  -1 s - l ,  initial surface tension = ~7(0) = 72.8 dyne cm - l ) ,  
whose surface tension decays with surface age due to evapora- 
tion of volatile species, migration of surfactant molecules to the 
surface, or contamination of the surface with dust. The jet has 
volume flow rate Q = 0.342 cm 3 s -l  , and initial elliptical semi- 
axes &~(0) = 0.0225 cm, &2(0) = 0.0100 cm. These experi- 
mental conditions yield the scales 

ro = ~/q51(0)~2(0) = 0.0147 cm, 
ro 

Zo = --  = 0.147 cm, 
E 

zo Q = 506 cm (so that to = 2.89 x l0 -4 S), 
to ~rrg s 

pr~ 0.549 dyne, 
f°  = t - T  = 

(19) 

where we have tentatively selected e = 0.1. That is, the charac- 
teristic length of axial variation, Zo, identified as the wavelength 
of oscillation of the jet cross section, is anticipated to be on the 
order of ten times that of the transverse dimensions; subsequent 
computations validate this guess. 
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Fig. 1 D i m e n s i o n l e s s  nea r f i e l d  free surface profiles ~ 1  ( Z )  f o r  i nv i sc id  
jets with variable surface tension; for comparison, the profile with c o n -  
s tan t  surface t ens ion  ~ = 72.8 d y n e  c m  -~ ( - - )  is g iven .  In al l  solutions 
the initial data is ~ t ( 0 )  = 1.5, ~bl~(0) = 0. ( G r a p h s  can  be  c o n v e r t e d  to  
d i m e n s i o n a l  radius versus dimensional axial distance by multiplying the 
z - a x i s  by  0.15 c m  and the ~l-axis by 0.015 c m ) .  ~ ( 0 )  = 72.8 d y n e  c m  -1 
and ~ = 31 d y n e  c m  -~, so that c~ = 0.827 and  c= = 1.115. (a)  F o r m  1: 
exponentially decaying form, with rate values cs = 0.3 ( -  - - ) ,  c3 = 2.1 
( . . . . .  ), ca = 7.0 ( . .  , ) ,  ca = 200 ( . . . ) ;  (b )  F o r m  2: B r a z e •  e t  al, form, 
w i t h  rate values c4 = 2.16 × 10 -s ( -  - - ) ,  c4 = 4.12 × 1 0 - "  ( . . . . .  ), 
c4 = 6.07 × 10 -6 (. • . ) ;  (c )  F o r m  3: Hua and Rosen form, with parameter 
values c .  = 25.9, n = 3.839 ( -  - - ) ;  c .  = 9.667, n = 2.328 ( . . . . . .  ); 
c 5 = 4 . 5 8 ,  n = 1 . 6 3 4 ( . . . ) .  

in an oscillatory regime, at least upstream: the experimental 
design will result in an oscillating jet  with no attenuation due 
to viscosity and no axial acceleration due to gravity, to leading 
order. In this section we wish to model experiments in which 
variable surface tension continues down the jet as a leading- 
order effect, but the surface tension gradient is not too large. 
Hence, the Weber number evolves down the jet subject to the 
restrictions 

We assume that the surface age T at axial position x3 = 0 is 
zero, i.e., the surface is created at the origin. For steady flows, 
surface age and axial position are related by 

f ~  = to (20) 
- d x 3  ~ z  d z  

T v3(x3) "ao v~z) 
This allows surface tension, given as a function of surface age, 
to be expressed as a function of axial position, 

cr = o ' (T) = or(x3) = if(Z). 

The dimensionless parameters (13) are expressed as an O( 1 ) 
number times a power of the slenderness ratio e: 

1 gt2o 5.61 × 10 - 4 =  5.61• 4, 
F z0 

1 = cr(0)t2o 
- - =  1.92 = 1.92e °, 

W ( O )  pro 3 

Z = ~Tr----~ = 0.0135 = 1.35• 2, Z z = O. (21) 
tofo 

From these calculations we see that in this specific experiment 
W -~ is O(1 ) ,  at least upstream near the nozzle, and Z and F -1 
are less than O( 1 ). Recalling the earlier discussion; this jet  is 

1 E- I c2 WW2~z ) • < W ( z )  < ' < e. (22) 

For e = O. 1 this translates into the dimensional bounds 

3.79 dyne < a(x3) < 379 dyne 
c m  c m  

la(x3).x~] < 2580 dyne 
- cm 2 , 

(23) 

which must be monitored during the experiment; note that the 
above value or(0) = 72.8 dyne cm -I is comfortably inside (23)]. 
Within the bounds (23) the steady leading-order equations sim- 
plify to 

4 4,L 
v = 1, 4,,4,2 = 1, (1 + (~l)4,l.zz - -  2 -  

4,, 

(cos 2 0 : siu2.0)do_ ] 
7rW(z------'-~ 4,3 (4,~ sin 2 0 + 4,72 cos 2 0) 3'2 J = 0, (24) 

which we label Reg ime  1. Equation (24)3 is the dif ference 
of  the steady leading-order  forms of  Eqs. (12) ,  and (12)2, 
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with ~t and ~2 eliminated using (17)],2. Since in Regime 1 
gravity is not leading order and hence axial velocity is con- 
stant to leading order, surface age is proportional to axial 
location: 

t0 
T = --  x3 = toZ. (25) 

Z0 

Equations (24) were analyzed in Bechtel et al. (1988) and 
Bechtel (1989) for the special case of constant surface tension 
(W = constant), in which (24)3 describes a conservative nonlin- 
ear oscillator and surface tension provides the restoring force. 
The total conserved energy per length is 

1 - 4  2 4 ~ E ( ! - ~ ' ~ )  1} (26) 
h = ~(1  + ~1 )~bl,z + ~ L  7r¢, 2 ' 

where E is the complete elliptic integral of the second kind as 
defined in Abramowitz and Stegun (1964). The first term in (26) 
is the kinetic energy per length and the second term is potential 
energy per length, normalized so that it is non-negative. 

W h e n  sur face  tens ion cr evolves ,  the energy per length h 
decays proportional to surface tension decay: 

~ E ( I  - ~b 4) 1} 
h,~ = - 4  W~ [ 7r~bl 2 

= 4t___~ { E ( 1 - ~ b ~ )  1} 
Pr 3 a,z 7rqSl 2 " (27) 

To produce quantitative predictions of jets with noncon- 
stant surface tension, we now invoke specific constitutive 
equations for the decay of surface tension with surface age. 
We investigate three functional forms: (i) exponential decay, 
(ii) the thin-film diffusion model derived by Brazee et al. 
(1994), and (iii) the algebraic form proposed by Hua and 
Rosen (1991). We do not address the fundamental issue of 
the physics and chemistry responsible for the evolution of 
surface tension. 

For each posited surface tension form, we solve the  d i r e c t  
p r o b l e m :  we numerically integrate the governing differential 
Eqs. (24) with the particular specified function a(z)  to ob- 
tain the free- surface profile ~b~ (z). Features of the jet profiles 
are then plotted. Looking ahead to an i n v e r s e  p r o b l e m  based 
on experimental data and this model, we seek relationships 
between features of model solution behavior which can be 
reliably measured in an experiment and the surface tension 
functions, namely its form and coefficients within the form. 
For each of the three posited surface tension forms, we estab- 
lish invertible relationships between decay rates and the far- 
field amplitude and wavelength of the oscillating free sur- 
face. 

Form 1: Exponentially Decaying Surface Tension. 
First we assume an exponential decay of surface tension with 
surface age, equivalent in this regime to exponential decay of 
surface tension with axial position: 

or(x3) = O'r. + (0"(0) -- crE)e-"~3 or 

1 
= cl + c2e %z, (28) 

W(z) 

where the constant a is the exponen t ia l  decay  rate parame te r .  
Note the relations c3 = z0~, c2 = ( t~ /pr~)(~r(O)  - ere), and Cl 
= ( t~ /pr~)cre .  
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Fig. 2 Successive maximum ampli tudes of  e a c h  so lu t ion  in Fig. 1, fo r  a 
m u c h  larger axial domain (near-f ield and far- f ie ld).  (a) Form 1:c3 = 0.3 
(+ ) ,  ca = 2.1 (©),  c3 = 7.0 (× ) ,  c8 = 200 (*) ;  (b) Form 2:c4 = 2.16 × 10 5 
(+ ) ;  c4 = 4.12 × 10 5 (©);  c4 = 6.07 × 10 5 ( , } ;  (c) Form 3:c8 = 26.7241, 
n = 3.839 (+ ) ;  c5 = 9,975, n = 2.328 (©);  c5 = 4,725, n = 1.634 (*).  

Form 2: Thin-Film Diffusion Model of Brazee et al. 
Our second form is adopted from Brazee et al. (1994): 
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The decay of energy per length (26) for the oscillating jets of Fig. 
l ( a )  with exponentially decaying surface tension, c3 = 0.3 ( - - - ) ,  
c3 = 2.1 { . , -  . - ) ,  cs = 7.0 (. • . ) ,  ca = 200 (.o.).  

f 
~r(T) = or(0) + (aE - ~r(0)) J l  

k 

-7r2 ,,=0 ~ (--1)"e-~2o("+i/2)2(Tl"2)}- . . . .  n + ~ ' (29) 

which follows from a thin-film diffusion model accounting for 
surface adsorption, where D is the diffusion coefficient and a 
is the apparent film thickness. Using the relation (25) between 
surface age T and axial location, we convert (29) to an expres- 
sion for surface tension as a function of  axial position x3, 

( 

or(x3) = or(0) + (a;c - a ( 0 ) )  t l  

L 

1 71- n-0 ~ + - -  

2 

1 2 ~, (-1)"e-'~2("+1/2)2c4 z 
o r  - C I Jr- C 2 - -  2. 1 , ( 3 0 )  

W ( z )  7r ,,=o n + - 

2 

where c~ and c2 have the same relations to ~r(0) and aL as in 
the exponential form (28),  and c4 = toDa-2. For three different 
agrochemical surfactants, each in varying concentrations, 
Brazee et al. (1994) provide an estimate of Da-2.  For all solu- 
tions they assume an initial surface tension of 72.8 dyne cm '~ 
and measure equilibrium surface tension values at a surface age 
of 70 ms, ranging between 30.4 and 42.9 dyne cm -~ . By match- 
ing with experimental measurements they deduce values of 
Da -2 between 0.02 and 0.2 s -~ . 

F o r m  3: Algebra ic  F o r m  Proposed  by l-Iua and Rosen, 
The third form for dynamic surface tension is a power law 
proposed by Hua and Rosen (1991) and employed by Shavit 
and Chigier (1995),  

~ ( 0 )  - ~ = + (31) 

1 + ~2._~\t,j 

where t* and n are specified constants. This relation also pre- 

dicts that surface tension ~ decays smoothly from a specified 
initial value or(0) to a specified equilibrium value erE. Using 
the relation (25) between surface age T and axial location x3, 
we have 

a(x3) = az~ + 
o ( 0 )  - c~;~ 

( toX3 y' ' 
1 + \ z ~ * J  

1 C2 
W ( z )  - c, + / z ~" ' (32) 

l +  [ ] - -  
\ c5 /  

where c5 = t*/to. 

Numer ica l  Exper iments .  In all calculations we assume the 
initial surface tension to be that of water, ~(0)  = 72.8 dyne 
cm -1, and fix the equilibrium surface tension a;~ = 31 dyne 
cm 1, consistent with common agrochemical surfactant solu- 
tions (Brazee et al., 1994); in the dimensionless forms, q = 
0.827 and c2 = l. 115. We explore variations in the decay forms 
and associated decay parameters. In the inverse problem for 
surface tension characterization, ae will be measured with static 
techniques, such as the Du Nouy ring, and the remaining rate 
parameters (a  in Form 1, Da 2 in Form 2, and t* and n in 
Form 3) will be inferred from an inverse formulation of the 
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Fig. 4 Dependence of the sustained far-field oscillation on c3 of a jet 
with exponentially decaying surface tension. The top ,  middle,  and b o t t o m  
graphs show the dependence of far-field wavelength, amplitude, and 
energy ,  respectively, for c8 > 0.1. For comparison, the dashed and do t t ed  
lines indicate the values of these quantities when surface tension is 
constant: cr =- ~ (0 )  = 72.8 dyne  c m  -1 ( -  - - )  and  ~r ~ ~E - 31 dyne  
c m  -1 ( . . . ) .  
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Fig. 5 Dependence of the sustained far-field oscillation on c4 of a jet 
with decaying surface tension given by the Brazee et al. form. The top, 
middle, and bottom graphs show the dependence of far-field wavelength, 
amplitude, and energy, respectively, for c, > 0.1. The dashed and dotted 
lines indicate the values of these quantities when surface tension is 
constant: o, ~ ~(0) = 72.8 dyne cm -1 ( -  - - )  and ¢r -= o'E = 31 dyne 
c m - '  (. • .). 

model coupled with experimental measurements of the oscillat- 
ing jet profile. 

In Fig. 1 we plot the near-field free-surface profiles for 
all three forms of surface tension decay. Figure 1 (a )  gives 
the profiles for exponential surface tension decay, Form 1. 
We note that the most rapid exponential decay (c3 = 200) 
was purposefully chosen so that the condition (22)2 on sur- 
face tension gradient is violated in a very short range (here 
0 -< z -~ 0.0015). Therefore, the flow with c3 = 200 is 
strictly not in Regime 1 very near the nozzle, but instead is 
in what we will call in the following Regime 2; see the next 
section. All other jets plotted in Fig. 1 satisfy conditions 
(22) everywhere along the jet,  so that they are everywhere 
in Regime 1. Figure 1 (b)  depicts je t  behavior under Form 
2; we give the oscillating jet  profiles for values of Da -2 
ranging from 0.07 to 0.21 s -x, consistent with the above 
values reported in Brazee et al. (1994).  Figure 1 (c)  gives 
jet  behavior for Form 3; the values of t* and n we have 
chosen correspond to aqueous surfactant Tergitol NP-10 so- 
lutions with concentrations of 6 mM, 12 mM, and 60 mM 
(Shavit  and Chigier, 1995). Figure 1 illustrates a complex 
dependence of amplitude and wavelength on the decay form 
and rate parameters. Observe that the wavelengths and am- 
plitudes of the oscillating jets with decaying surface tension 
are consistently greater than those of the je t  whose surface 
tension remains at the initial value; this is consistent with 

the behavior of a nonlinear mass/spr ing system with weak- 
ening spring constant. 

To anticipate free-surface features which one might measure 
in experiments, in Fig. 2 we post-process from the solutions in 
Fig. 1 the locations and values of each maximum amplitude of 
the oscillation. We extend in Fig. 2 beyond the nearfield shown 
in Fig. 1 into the far-field. A careful inspection of Fig. 2 reveals 
that the far-field amplitude of oscillation depends on the form 
and on the rate constants within a given form of surface tension. 
This may be understood as follows: As surface tension decays 
to an equilibrium, so does energy. If one could infer the final 
(equilibrium) energy density heq from the surface tension decay 
alone, then the amplitude and wavelength of the far-field sus- 
tained oscillation could be deduced a priori, without integrating 
the equations of motion. However, from (27) we see 

4tgf: ~ E( !  - qb4/) 1} 
heq = h(O) + --pr~ cr'z(Z) I 7r~1 2 dz, (33) 

so that the equilibrium energy (and equivalently the farfield 
amplitude and wavelength) depends on the entire history of the 
oscillation, and cannot be inferred merely from h(0)  and ~r(z); 
heq must be numerically computed. In Fig. 3 we specialize to 
Form 1 and show the evolution of the energy density h(z) for 
the solutions of Figs. 1 (a) ,  2 (a ) .  The four jets each decay to 
different equilibrium energy per length values, heq = 0:308063, 
0.309314, 0.255606, 0.204821 for c3 = 0.3, 2.1, 7.0, 200, re- 
spectively, even though each decays to the same equilibrium 
surface tension. For comparison, the energies per length for the 

3.2 

3.15 
£ 
~ 3,1 1 2 3 

3.05 

30 5 10 15 2 2 30 3 40 

165/ . 1551  
~_ 1.5 1'5451/ \ 

1.64 r , 

E~1.55 1 2 3 

1,5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . .  215 3 3 I 1.45 5 10 15 20 0 5 40 
n 

0.35 

0.315 
0.3 

0.25 ~ 1 2 3 

0 ,2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i i i °'150 5 10 1'5 2'0 2; 30 3'5 40 
n 

Fig. 6 Dependence of the sustained far-field oscillation on n of a jet 
with decaying surface tension given by the Hua and Rosen form when 
c6 = 1.0. The top, middle, and bottom graphs show the dependence of 
far-field wavelength, amplitude, and energy, respectively, for n > 0.6, 
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oscillating jets with constant surface tensions 72.8 dyne cm ~ 
and 31 dyne c m  ~ are the constants h = 0.482 and 0.2047, ~ 3.2 
respectively. E 

The decay of surface tension is confined to the near-field, ~ 3 
with the equilibrium value being reached typically at a frac- .~ 2.a 
tion of the first wavelength, at its slowest before completion 2.6 

of the second oscillation. It would be difficult to make mea- ~ 2.4 
surements of the jet free surface in this small domain with ~ 2.2 
the necessary accuracy for the inverse problem. The discov- ~ 2 
ery that far-field oscillatory jet behavior varies with the ~ ~.8 
form of the surface tension decay and decay rate parame- 
ter(s) ,  albeit in a nontrivial way, indicates that this is un- 
necessary. One can quantitatively infer the decay of surface 
tension, which happens very near the nozzle, with measure- 

1.65 
ments far downstream of the nozzle, measurements that can 
be made much more reliably. 

Figure 4 shows the dependence of equilibrium wave- ~ 1.6 
length, amplitude, and energy on the exponential decay rate E= 
c3 in Form 1. The relations are one to one except in a small E 1.SS 
range of c3 inside of which the same wavelength occurs for '~ 
two distinct values of c3. The same behavior happens for E 
amplitude. By inverting c3 from amplitude and wavelength ~. 1.5 
measurements, the multiplicity in the narrow band can be 
averted. 

Figures 5 - 7  provide the analogous relationships for Form 
2 and Form 3. Figures 4-7provide the basisstbr an inverse 
characterization of the surface tension decay forms and rate 
constants within those forms; experimental measurements 
provide the vertical axis information on amplitude and 
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Fig. 7 Dependence of the sustained far-field oscillation on c5 of a jet 
with decaying surface tension given by the Hua and Rosen form when 
n = 3 .0 .  The top, middle, and bottom graphs show the dependence of 
far-field wavelength, amplitude, and energy, respectively. 
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Fig. 8 Dependence of the oscillation after four cycles on c3 of a jet 
with exponentially decaying surface tension. The top graph shows the 
dependence of the wavelength between the fourth and fifth maxima on 
c3; the bottom graph shows the dependence of the fourth maximum 
amplitude on c3. For comparison, the dashed and dotted lines indicate 
the values of these quantities when surface tension is constant: ~ 
~r(0) = 7 2 . 8  d y n e  c m  -1 ( -  - - )  a n d  ~r ~ ere = 31 dyne cm I ( . . . ) .  

wavelength, which is then inverted using the figures to infer 
rate parameters. A statistical procedure, e.g., least squares, 
could be implemented to find a best fit among these available 
surface tension decay forms. 

As a practical matter, it is unnecessary to monitor that an 
equilibrium oscillation has been reached. Figures 8-11  
show that the far-field relationships of Figs. 4 - 7  are dupli- 
cated if we focus on fixed downstream observations, chosen 
here as the fourth/fifth cycles of oscillation. 

Regime 2: An Inviseid Jet With Dominant Surface Ten- 
sion Gradient. As mentioned above, the jet in Fig. 1 (a) with 
c3 = 200 violates condition (22)2 in the domain 0 _~ z -< 0.0015. 
In this narrow axial domain 1/W and B are O(1), W,z/W 2 is 
O(c 2) and 1/F, Z and Z~ are O(c2), so that the appropriate 
steady leading-order equations from (12) are 

~0 TM l)z = _~2 ~ 2  ( ~  c°s2 0 + ~ sin 20)l/2dO, Vq~l~2 = 1, 

2 2 q 52 4 
- 4,2v,  + v.z; + (K,. - K,.) 

c2 4W~ - - ~ ( E ~ -  Yc) = 0 ,  (34) 

rather than Eqs. (24). To compute the profile tor c3 = 200, one 
integrates Eqs. (34) in the domain 0 -< z <- 0.0015 (in which 
e2WJW2(z) is O(1)),  and then integrates Eqs. (24) for z > 
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Fig. 9 Dependence of the oscillation after four cycles on c4 of a jet with 
decaying surface tension given by the Brazee et al. form. The top graph 
shows the dependence of the wavelength between the fourth and fifth 
maxima on c.; the bottom graph shows the dependence of the fourth 
maximum amplitude on c4. 

0.0015 ( in which c2W~/W2(z) has decayed to below O ( 1 ) ) .  
For practical purposes, this effect is negligible. 

Regime 3: Newtonian Jets in the Presence of Grav i ty .  
In this section we demonstrate that an experiment  not much 
different than Regime 1 above can lead to a regime in which 
viscosity and gravity couple with inertia and surface tension as 
leading-order effects. 

Consider a jet  of the same fluid as above (p = 0.997 gm 
cm -3,r~ = 1.00 × 10 2 g c m  i s ~,afr0)  = 72.8 d y n e c m  - l )  
but with a larger aperture (semi-axes 1.5 and 0.97 cm) and 
greater volumetric flow rate (Q = 240 cm 3 s 3). Retaining 
the slenderness ratio e = 0.1, we compute the dimensionless 
parameters 

1 0.5e0, 1 l = BZ = 0.152E °, (35)  
= w ( o )  = 1 ° ~ ° '  

where R is the Reynolds number. Note that for this jet, 1/R and 
l /F  as well as B and l / W  are O( l ), and the steady leading- 
order equations are, from (12)  and (17)3, 

1 
vv.~ = ~ ,  vchl¢2 = l, 

U 2 ( ( ~ ] ~ [ ) i , z z  - -  Cf)242,ZZ ) "q-" U U , z ( ~ i ¢ I ,  z - -  {~f12~k2,Z) 

8v (ch,,~ q52,~x~ 4 
+ -~- \ ~ - ~  ] + W~z) ( K,. - K,.) = O. (36)  

With gravity as a leading-order effect, surface age is no longer 
proportional to axial distance, as in Eq. (25). Rather, combining 
(20) and (36)~, we have 

T(z) = to dz = toF 2 z +  1 - 1 . (37)  

2 z +  1 

3.2 
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Fig. 10 Dependence of the oscillation after four cycles on n of a jet with 
decaying surface tension given by the Hua and Rosen form. The top 
graph shows the dependence of the wavelength between the fourth and 
fifth maxima on n; the bottom graph shows the dependence of the fourth 
maximum amplitude on n. 

With (37) ,  any form of surface tension as a function of surface 
age can be converted to a function of axial distance. For in- 
stance, the Brazee e t a l .  form (29)  becomes 

E 3.2 
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Fig. 11 Dependence of the oscillation after four cycles on cs of a jet 
with decaying surface tension given by the Hua and Rosen form. The 
top graph shows the dependence of the wavelength between the fourth 
and fifth maxima on c5; the bottom graph shows the dependence of the 
fourth maximum amplitude on c5. These values are the far-field values 
for amplitude, and energy for cs > 0.03. 
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Fig. 12 The effect of gravity on surface tension as a function of axial 
distance. Surface tension as a function of surface age is given by the  
Brazee et  al. f o r m  w i th  c ,  = 2.75 × lO-S: F ~ = 0 ( - - ) ,  F ~ = 0.5 
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a(x3) = o'(0) + (a,c - G(0)) {1 

. . . .  ~,,=o2 ~ (-1)"~ ~)(,,+,/~)~(,.~{~77:~,, + .~_ ' ) ) / " '  } . (38) 

Figure 12 shows the effect of gravity to delay the decay of 
surface tension with axial distance; the specific form is the 
Brazee et al. form (Form 2) with Da ~ = 0.095 s ~. Figure 
13 shows how this delay, together with the underlying axial 
acceleration of the jet, continually stretches, decreases the am- 
plitude, and decreases the mean surface of the free-surface oscil- 
lation. Figure 14 illustrates the damping effect of viscosity; the 
dotted line, with F -~ = 0.5 and R -~ = 0.152, is the predicted 
behavior of the experiment just described, with the decay of 
surface tension with surface age depicted in Fig. 12. 

For more viscous fluids it might prove impossible to design an 
experiment in Regime 1; the viscosity-induced drag in the capillary 
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Fig. 13 The effect of gravity on the oscillating jet profile with surface 
tension given by Fig. 12. 4~(0)  : 2.5, q~l=(0) = 0, R 1 = 0, F i : 0 
( ) , F  -~ = 0 . 5 ( - -  - ) , F  1 = 2 (  . . . . . .  ). 
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Fig. 14 The e f fec t  o f  viscosity on the oscillating jet pro f i le  w i t h  surface 
tension given by Fig. 12. F I = 0.5, R 1 = 0 ( ), R I = 0.0152 
( -  - - ) , R  ~ = 0.045 ( . . . . . .  ) , R  -~ = 0.15 ( . . . ) .  

upstream of the nozzle will likely force larger nozzles and flow 
rates, elevating (as was seen in the above experiment) gravity 
and/or viscosity to leading order. As is evident from Figs. 13 and 
14, if either of gravity or viscosity is leading order, there is no 
equilibrium (sustained far-field oscillation), and hence there is no 
equivalent of Figs. 4 -7  to be employed in the inverse problem 
for surface tension decay. In such regimes, one can focus the model 
and experiments at a fixed downstream location and reproduce the 
functional equivalents of Figs. 8-11. 

4 Conclusion 
Previous equations for oscillating jets are extended to allow 

for surface tension to vary in space and time; the new models 
are used to investigate the effect of decaying surface tension 
on oscillating jet behavior. Three different functional forms for 
the decay of surface tension with surface age are studied: an 
exponential decay form, a diffusion model by Brazee et al. 
(1994), and an empirical form developed by Hua and Rosen 
(1991). In all forms we select initial and equilibrium values of 
surface tension, and decay rates consistent with experimental 
values reported in Thomas and Hall (1979), Hua and Rosen 
(1991), Brazee et al. (1994), and Shavit and Chigier (1995). 
The model behavior established here indicates that the rate and 
form of surface tension decay can be inferred from a combina- 
tion of static and downstream measurements along with an in- 
verse formulation of the model. This procedure avoids measure- 
ments of the jet profile near the nozzle where rapid surface 
tension decay takes place, and therefore appears to be practically 
attractive. 
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Static Analysis of Reissner- 
Mindlin Plates by Differential 
Quadrature Element Method 
In this paper, a new numerical method, the differential quadrature element method 
has been developed for two-dimensional analysis of bending problems of Reissner- 
Mindlin plates. The basic idea of the differential quadrature element method is to 
divide the whole variable domain into several subdomains (elements) and to apply 
the differential quadrature method for each element. The detailed formulations for 
the differential quadrature element method and compatibility conditions between 
elements are presented. The convergent characteristics and accuracy of the differen- 
tial quadrature element method are earefully investigated for the solution of the two- 
dimensional bending problems of Reissner-Mindlin plates. Finally, the differential 
quadrature element method is applied to analyze several bending problems of two- 
dimensional Reissner-Mindlin plates with different discontinuities including the dis- 
continuous loading conditions, the mixed boundaries, and the plates with cutout. The 
accuracy and applicability of this method have been examined by comparing the 
differential quadrature element method solutions with the existing solutions obtained 
by other numerical methods and the finite element method solutions generated using 
ANSYS 5.3. 

1 Introduction 

The differential quadrature method has become increasingly 
popular in many engineering fields, especially in the structural 
mechanics field. Many researchers have shown that this method 
has the advantage of producing the highly accurate solutions 
with minimal computational effort and therefore has the poten- 
tial to become an alternative to the conventional numerical 
methods in solving the structural problems (Bert et al., 1988, 
1989; Pandya and Sherbourne, 1991; Bert and Malik, 1995; 
Liew et al., 1996; Bert and Malik, 1996). However, the further 
application of this new method has been greatly confined by 
the drawback that it can only be applicable directly to solve the 
problems which should satisfy the continuous conditions in the 
whole variable domain, including the geometry, boundary, ma- 
terial properties, and the loading conditions. To overcome this 
drawback, Striz, Chen, and Bert developed the quadrature ele- 
ment method to solve the bending of truss and beam (Striz et 
al., 1994) and free vibration of thin plate (Chen et al., 1997). 
Although the same idea had been used by Civan and Sliepcevich 
( 1985 ) and by Shu and Richards (1992) to solve their respective 
problems, the works of Striz et al. (1994) are more comprehen- 
sive by considering the discontinuous loading and geometry as 
well, not just concerning the geometry domain of variables. 
However, for all the problems analyzed, Striz et al. (1994) 
introduced a &grid arrangement, which uses two points, sepa- 
rated by a small distance 6, to present one boundary point in 
order to satisfy the multiboundary conditions at one point. This 
is not convenient and accurate enough in solving the differential 
equations with four or higher orders. 
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In this paper, an improved differential quadrature method, or 
called the differential quadrature element method, is developed 
for the bending analysis of thick rectangular Reissner-Mindlin 
plates. The quadrature element of Reissner-Mindlin plate devel- 
oped here has three degrees-of-freedom at each grid point and 
three boundary conditions are all exactly satisfied at every 
boundary point. 

2 Differential Quadrature Element Method Formu- 
lation 

Consider a rectangular Reissner-Mindlin plate with side 
lengths a × b as shown in Fig. 1. The plate is divided into NE 
elements based on the discontinuities in the geometry, boundary 
constraints, and materials used. Each element consists of an 
isotropic material, has uniform thickness and continuous bound- 
ary constraints on each edge and is subjected to a continuously 
distributed load. For the lth element, the thickness of the plate, 
Young's  modulus, shear modulus, Poisson's ratio, and the load 
intensity are represented by h~, Et, Gt, ul, and qt, respectively. 

2.1 Governing Equations and Constraint Conditions. 
For a given element l, the governing equations are given in 
terms of the displacement components as follows (Mindlin, 
1951): 

o,[ 
T (1 - ~,t)v20x + (1 + ~,,) ~ x  

- K G t h t ( O ~ +  Cx) = 0 ( l a )  

T (1 - u~W20~ + (1 ÷ ut) 04~ 

-~¢Gtht(O~f+ ~y) = 0  ( l b )  
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-------Ii- 

/~=1, 2,. . . . . . . . .  , /E 

A rectangular plate with side dimension a x b  

in which 

KGshl(V2w + qS) + qt = 0 l c )  

q5 = 0q/, + 00__.z (2) 
Ox Oy 

0 0 V 2 = - -  + - -  (3) 
ON 2 Oy 2 

Elh~ 
Di = (4) 

12(1 - u ~ )  ' 

w is the transverse deflection; Ox and Oy are the rotations of the 
normal about the x-axis and y-axis, respectively; Dt is the plate 
flexural rigidity and K is the shear correction factor, which is 
presently taken as ~-. 

The moments and shear forces are expressed as 

(OOx + u OOy~ (5a)  Mx D,\ Ox Oy ] 

\ Ox 03, J 

( 0% 1 - ut Dl + ( 5 c )  
Mxy - "~ Oy Ox / 

w = o .  4,x = o ,  q,y = o;  ( 8 )  

(d) Generalized free sides (F ) :  

Qx = (Q~Xt)l, M, = (me*t),, m,y = 0 (9) 

where ~xt ( M x ) 1 ,  (MyX')J, (Q~Xt)l and (Q~,x')l are the concen- 
trated external line moments and loads at the side x = 0. 

2 .2  R e c t a n g u l a r  D i f f e r e n t i a l  Q u a d r a t u r e  E l e m e n t  
M e t h o d  R e i s s n e r - M i n d l i n  P l a t e  E l e m e n t .  The lth element 
is further divided into Nx × Ny grid points along the x and 
y-axis, respectively, and subjected to "externa l"  concentrated 
line forces and moments, the combination action of the real 
external forces and moments applied at the four edges of ele- 
ment l, and the shear forces and moments produced by adjacent 
elements as shown in Fig. 2. By applying the differential quadra- 
ture method rule (Liew et al., 1996), the governing equations 
( l a - c )  can be discretized at each discrete point on the inner 
grid of the element 1 as 

Nly ,v,~: ( 1 - Vl)  y .  --(2) 
~.~ Ci k<2) (Or)k: + - - 2  Cj,,, (I/Ix)ira - -  Ft(I,bx)ij 
k = I m = I 

Nix Nt~ 
+ ( 1  + ~ l )  [ Z  [- ' (I)  Z --(1) - -  ~ ik Cjm ( ~/y)km ] 

2 k 1 m=l 
N, 

-- F/ ~ Cl~l(w)kj = 0 (10a) 
k=l 

Nix N h, Nly 
(1 + ~ , , ) [Z  r( , )  Z - ( "  

C~,,, (~x)k,,,] + ~ -(~> Cjm ( ~]y)im t-.ik 
2 k--I m=l m--1 

N/x 
+ (1 - u,) 5-,, (~) 

- -  C i k  (Oy)/d -- FI(~y)U 
2 k=l 

N,y 

F, ~ -<" w - C ) , . (  ) , . ,  = 0 (10b) 
m = 1 

Nla NIy Nix 

Z cl2(w)~j + Z C}2(w),., + Z c12)(~.)~, 
k=l m=[ k=l 

% 

+ Z C}]2(¢y)i,- q' 
~cGlhl m 1 

i =  1 , 2 , 3  . . . . .  N~;j= 1 , 2 , 3  . . . . .  Nyand 

l =  1 , 2 , 3  . . . . .  NL. (10c)  

where C},~ ) and C}; ° ( r  = 1, 2, 3 . . . . .  N~; s = 1, 2, 3, . . . ,  Ny) 
are the weighting coefficients for the nth-order partial deriva- 

h /Ow + ~0,.) Qx = Ko, , (Sd )  

a y  = K a l h , (  O~--[  - [py) . ( S e )  

The boundary conditions for the side of  rectangular plate can 
be classified into four kinds. Taking side x = 0 for example, 
the boundary conditions are expressed as follows: 

(a) Generalized hard simply supported sides (S):  

W = 0 ,  /py = 0 ,  M,. = ( M ~ X t ) l ;  ( 6 )  

(b) Generalized soft simply supported sides (S'): 

w = 0, Mxy = 0, Mx = (M~Xt)t; (7) 

(c) Clamped sides (C) :  

I . 
(Q x ) u (Q tx )'ux,j 

q, (xo,) 
(M'~)',jI ~ ,, 

e l e m e n t  l 

2 

j= l  

(My) s. N~ 

i (x,v) 

(Oty ), . , 

i= 1 ,2 ,3  . . . . . . . . . . .  i . . . . . . . . . .  Nx (M/y)'j.l 

Equilibrium and arrangement of grid points of element I Fig. 2 
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Fig. 3 Locations of the conjunction nodes on the interface boundaries of ele- 
ments: (al two elements are connected along x-axis; (b) two elements are con- 
nected along y-axis; {c) four elements are connected at point m 

fives of w, ~ ,  and Oy with respect to the global coordinates x 
and y. 

At the four edges of element l, the governing equations are 
replaced by the corresponding boundary conditions or compati- 
bility conditions. If the edge is located at the sides of the plate, 
the boundary conditions (6) to (9) are used, otherwise, the 
compatibility conditions are employed. 

The matrix form of Eqs. (10a-c)  can be written as 

K~d ~ = f~ (11)  

in which K% d e, and fe are defined as the element weighting 
coefficient matrix, element displacement vector, and element 
force vector, respectively, and 

d e  = [WI , I ,  I]/I,I, I]/ l , l ,  Wl,2 '  ff]1,2' IPl,2, 

• "" WNr,Ny, ff]A~,,Ny, $Nr, N , ]  T ( 1 2 )  

fe t , t , , = [(Qx)l,1, (M~y) l , i , ( M x ) l , 1 ,  1,1, (Q~),,2, ( M x )  1,2, 

(M~)1.2 . . . .  / , , t , , . ' , (Qx),,Ny, (M!,)i,N . . . .  (M..,)i,N. (Qty)2,,, 

l t 1 I (My)z1, 0, fi.2, 0, 0, f2.3, 0, 0, f2.N,. 1, (M~y)zl, 0 . . . . .  

I t / t / t / t 
( Q x ) N , , I ,  ( Mxy  )2,u v , ( My )zN, ( Q y ) 2 . N , ,  , . . . . . . .  . 

I t l t l t I t I t 
( g x ) N x , 1 ,  (Qx)N~.2, (M~y)N,.I, ( M x ) N . 2 ,  ( M xy ) N,2, 

. . . .  (Q'~)'~,N., (M!~)'~x,,,,, (M ' . )L .~]  ~ 13) 

where 

f j =  qb i = 2,3,  N ~ -  l ; j  = 2,3,  N y -  1. 
KGth~ ' . . . . . . . .  

l ¢ 1 t ¢ I t I ~ I t ( Q x ) l , j ,  (Ux)ld,  (M~y)ld. (O, )uJ ,  (M,)Nj,  (M~y)N~S, 
1 t l r t ., (Qy)~.,, (My)i,, ,  (Q~y)~.N,, and (Mt~.)~.Ny (i = 2, 3 . . . . .  Nx - 

1;j = 1, 2 . . . . .  Ny) are the combinations of the external forces 
and moments applied at the four edges of element l, and the 
shear forces and moments produced by adjacent elements. The 
expressions of these forces and moments are determined by the 
compatibility conditions given in Section 2.3. The coefficients 
in K ~ are determined by Eqs. (10a-c) .  

2.3 Assembly  of Plate Elements  and Connect ion Condi-  
tions. To obtain a complete solution for the whole plate, a 
global system equations for all the nodal points of the plate 
labeled 1 to N should be constructed first. This is simply accom- 
plished by assembling the weighting coefficient matrices, force 
and moment vectors, and displacement vectors of all elements. 
The final global matrix equation for the whole plate becomes 

Kd = F (14)  

where K, d, and F represent the combined weighting coefficient 

matrix, global displacement vector and global force, and mo- 
ment vector, respectively. The vector d is expressed as 

d = [w,, (~x)l, (~y)~, w2, (~bx)2, 

(qJy)2 . . . . . . . .  WN, (~x)N, (0,')N] T. (15) 

The displacement compatibility and force/moment equilibrium 
conditions should also be built up for the conjunction nodes 
on the interface boundaries of the elements. Obviously, the 
displacement compatibility condition is automatically satisfied 
at all the interface conjunction nodes as the same global nodal 
number is used for each conjunction node. Only the equilibrium 
condition is needed to form the connection conditions for the 
differential quadrature element method plate elements. Ac- 
cording to the locations of conjunction nodes and the number 
of the elements meeting at these nodes, the connection condi- 
tions m'e expressed as follows: 

(1) For Nodes at Which Two Elements Meet: Suppose 
elements l~ and 12 are two adjacent elements as shown in Figs. 
3(a) and (b). The connection conditions for the conjunction 
nodes at the interface edge of element l~ and 12 connected in 
the x direction can be written according to the equilibrium con- 
dition as 

/I 12 1 ( Q x ) N A ,  j --  ( O x ) l , j  = (OxeXl)m 

I I I (Mx)N~.j - (M~2)Lj (M~ xt) . . . .  (16) 

11 12 (Mxy)N,j -- (Mxy),.i (M•t),,,J 

The connection conditions for the conjunction nodes of ele- 
ment l~ and 12 connected in the y-direction can be obtained 
similarly. 

(2) For Nodes at Which Four Elements Meet. The con- 
nection conditions for the common node m of the four arbitrarily 
selected elements l~, 12, 13, and 14 a s  shown in Fig. 3(c) can be 
expressed as 

13 '~ 1 (QI~t)NjV, + (Q'~ )N,, -- (Qx )I.N, - (Q'~4),,, (Q~'),,, 

(M~t)N.,N,, + (Mx)N~,I - -  (M~),,N~ (MI~)1,1 (M~Xt),,, 

12 l~ 14 
(Mtx) )u~,m. + ( M x y ) N . l  -- (M2y) l ,Ny  - ( M x y ) l , l  (M~),,,J 

(17) 

or expressed in terms of the y components of force/moments 
at node tn of the four elements in the similar way. 

(3)  For Conjunction Nodes Located at the Boundaries of  
Plate. For the conjunction nodes located at the side boundaries 
of the plate, both the boundary conditions and the connection 
conditions should be considered. Take the side boundary x = 
0 for example. The following modified boundary conditions 
should be used: 
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Table 1 Convergence of numerical results of a uniformly loaded CCCC square plate 
with refinement of elements (h/a = 0,01; grid points in each element 5 × 5) ~ 

Nj~. ] N W,. error (%) ~ -  e~or (%) ~ ' .  error (%) ~ "  error (%) 
i 

1 25 1.42256 12.90 2.95354 27.86 2.95354 27.86 -4.54390 -11.43 

4 81 1.05050 -16.63 1.27193 -44.94 1.27193 -44.94 -4.06277 -20.80 

9 169 1.13088 -10.25 2.02828 -12.20 2.02828 -12.20 -4.55796 -11.15 

16 289 1.18772 -5.74 2.10737 -8.77 2.10737 -8.77 -4.80642 -6.31 

25 441 1.2i615 -3.48 2.19544 -4.96 2.19544 -4.96 -4.92359 -4.02 

36 625 1.23245 -2.19 2.21919 -3.93 2.21919 -3.93 -4.99020 -2.73 

49 841 1.24242 -1.40 2.24424 -2.85 2.24424 -2.85 -5.03055 -1.94 

64 1089 1.24898 -0.87 2.25436 -2.41 2.25436 -2.41 '-5.05706 -1.42 

81 1369 1.25346 -0.52 2.26456 -1.97 2.26456 -1.97 -5.07513 -1.07 

100 1681 1.25666 -0.27 2.26969 -1.75 2.26969 -l .75 -5.08798 -0.82 

121 2025 1.25899 -0.08 2.27471 -1.53 2.27471 -1.53 -5.09733 -0.64 

144 2401 1.26075 0.06 2.27759 -1.40 2.27759 -1.40 -5.10432 -0.50 

exact D 1.26 - -  2.31 - -  2.31 - -  -5.13 - -  

" W,. = w,. D/(10"3x qa 4 ); M -  : Mx,/(10"Zx qa2); M"e,. = M~'/( 10`2x q a2); 
where Mx,, is the bending moment M~ at the mid-side o f x  = 0. 

b Exact thin plate solution (Timoshenko and Woinowsky-Krieger 1959). 

~-  = Mx,, /(10"2x qa2), 

(a) wm : O, I/Ixm : O, Ipy m = 0 ( f o r  clamped side) (18) Table 2 Convergence of numerical results for a uniformly loaded SFSF 
square plate with refinement of elements (h/a = 0.01; grid points in each 

( b ) Wm = O, I~ty m = O, ( M~ ) I,Ny "q- ( M}  )l.I = (M.e~ xt ),n e l e m e n t :  5 x 5 )  a 

(for hard simply supported side) (19) N,~ N W,. error(%) ~-,. ~'or(%) ~,, error(%) 
I 25 13.02505 -0.50 12.03526 -I.75 2.19724 -18.92 

(C)  W,n = O, (Mlrl) l ,Ny + (M~r2)l.1- ext 4 = (Mx )m, 81 13.17772 0.67 12.52254 2.22 3.14739 16.14 

9 169 13.16021 0.54 12.37831 1.05 2.93867 8.44 

( M ~ y ) i , N  v -  + ( M ~ y ) l , l  = ( M ~ t ) , , ,  16 289 13.13406 0.34 12.32108 0.58 
1 

2.82683 4.31 

25 441 13.12000 0.23 12.30284 0.43 2.80220 3.40 
(for soft simply" " supportea- side) (20) 36 625 13.11224 0.17 12.29048 0.33 2.78318 2.70 

(Qla I I~I,N v + t~.g')(('~/~ ~1,1 = k~:2~x]( ('lext "~ .... 49 841 13.10756 0.13 12.28240 0.26 2.77018 2.22 
( d )  

64 1089 13.10458 0.11 12.27651 0.22 2.75915 1.81 

( M ~  ~ )I.N~ + , .,-(Ml2 )1.1 =(MxeXt  )m, 8t 1369 13.10260 0.10 12.27226 0.18 2.75079 1.51 
" 100 1 6 8 1  13.10125 0.09 12.26893 0.15 2.74355 1.24 

l I 12 ext (Mxy ) l .Ny  + ( M x y ) l , l  = (Mxy)m (for free side) 121 2025 13.10031 0.08 12.26634 0.13 2.73765 1.02 
144 2401 13.09964 0.07 12.26422 0.12 2.73249 0.83 

(21) exact ~ 13.09 - -  12.25 - -  2.71 - -  

3 C o n v e r g e n c e  and  A c c u r a c y  S tud ies  

For all the computations in this paper, the Poisson's ratio has 
been taken as v = 0.3. The grid points are designated by 

a 
Xi = ~ {1 --  COS [ ( i  - -  l ) T r / ( N x  - 1 ) ] } ;  

i =  1 ,2 ,3  . . . . .  Nx (22) 

b 
yj = ~ {1 - cos [( j  - 1)Tr/(Ny - 1)]}; 

j =  1 ,2 ,3  . . . . .  Ny. (23) 

To examine the validity of the differential quadrature element 
method in solution of the bending problems of Reissner-Mindlin 
plates, the uniformly loaded square plates with CCCC and SFSF 
boundary conditions, are chosen here for analysis. Since the 
mesh for the spaces of the grid points can be refined by either 
increasing the number of the discretized elements on plate or 
increasing the grid points in each element, the effects of both 
approaches on the convergence and accuracy of the differential 
quadrature element method results are investigated. The conver- 
gent properties and the relative percentage errors (error = 
[(Value)DQEM -- (Value) ..... ]/(Value)ex,ot × 100%) between 
the differential quadrature element method solutions and the 
exact thin plate solutions obtained by Timoshenko and Woinow- 
sky-Krieger (1959) are shown in Tables 1 to 4. Based on the 
data of all these tables, the following conclusions can be made: 

' W, = w, D/(10"3x qa4); ~-°  = Mx,/(10 "2x qa2); M-y, = My,./(10"2x qa2); 

b Exact thin plate solution (Timoshenko and Woinowsky-Krieger 1959). 

Table 3 Convergence of numerical results of a uniformly loaded CCCC 
square plate with grid point refinement in each element (h/a = 0.01; 
NE = 2) a 

Nx xNy N W,. error ( % )  ~7",, error (%) ~ -  I error (%) 

5 x 5 45 1.23183 -2.24 2.31252 -24.69 -4.76129 -7.19 

7 x 7 91 1.26610 0.48 2.27582 -1.43 -5.15036 0.40 

9 x 9 153 1.26804 0.64 2.29156 -0.76 -5.11353 -0.32 

11 x 11 231 1.26807 0.64 2.29182 -0.78 -5.13923 0.18 

13 x 13 325 1.26805 0.64 2.29133 -0.79 -5.12936 -0.01 

15 x 15 435 1.26802 0.64 2.29151 -0.80 -5.13209 0.04 

exact ° - -  1.26 - -  2.31 - -  -5.13 - -  

a Wc = wc D/(10-ax qa4); ~ - -  = Mx,./(10-2x qa2); M"yc = My,./(10"2x qa2); 
M",m = Mxm/(10"2x q a2)' where Mx,, is the bending moment M~ at the mid-side 

o f x  = 0. 
u Exact thin plate solution (Timoshenko and Woinowsky-Krieger 1959). 

(1) Either to increase the number of the elements or to 
increase the grid points in each element will yield the converged 
numerical results to the corresponding exact solutions by using 
the differential quadrature element method. 

(2) In cgmparison of two approaches to refine the mesh of 
the grid points on plate, increasing the grid points in each ele- 
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Table 4 Convergence of numerical results for a uniformly loaded SFSF square plate 
with increasing number of grid points in each element ( h / a  = 0.01, N~ = 2) ~ 

Nx ×Ny N w,. e~or(%) ~ -  error(%) ~ "  e~or(%) W~ 

5 x 5 45 13.0498 -0.31 12.0780 -1.40 2.2038 -18.68 15 .4917  

7 x 7 91 13.1101 0.15 12.2651 0.12 2.7119 0.07 15.2413 
! 

9 x 9 153 13.0974 0.06 12.2169 -0.27 12.5765 -4.92 15.1563 

11 × 11 231 13.1007 0.08 12.2508 0.007 2.6841 -0.95 15.t111 

13 × 13 325 13.0991 0.07 12.2408 -0.08 2.6844 -0.94 15.0849 

15 × 15 435 13.0992 0.07 12.2509 0.01 2.6888 -0.78 15.0688 

exact ~ - -  13.09 - -  12.25 - -  2.71 - -  15.09 

error(%) 

2.66 

1.00 

0.44 

0.14 

-0.03 

-0.14 

a W, = w,. D/(10"3× qa4); Mx~ = M~,. /(10"~× qa2); ~ ' - y =  My,. /(10"2× qa2); W~ = w,, D/(10"3× qa4), 

where w~, is the deflection at the mid-side ofy = 0. 
b Exact thin plate solution Cl'imoshenko and Woinowsky-Krieger 1959). 

Table 5 Influences of relative thickness on convergence of the differen- 
tial quadrature element method results of a uniformly loaded square 
plate with SFSF boundary conditions a 

N~×Ny h/a=0.01 

5×5 

7×7 

9×9 

11×11 

13×13 

15x15 

h/a=0.2 h/a=0.01 h/a=0.2 h/a=0.01 h./a=0.2 

i3.17772 14.56199 12.52254 12.35869 3.14739 2.38639 

13.13964 14.54131 12.39048 12.29873 3.00142 2.37625 

13.12255 14.53939112.32657 12.29294 2.86608 2.37247 

13.11343 14.53927 12.29739 12.29255 2.80127 2.37224 

13.10809 14.53926 12.28135 12.29253 2.76482 2.37223 

13.10471 14.53926 12.27142 12.29253 2.74189 2.37223 

" W c = w c D/(I0"3x qa4); M" = Mxc/(10"2x qa2); ~-y, = My,./(10-2x qa2). 

ment with fixed number of elements is much more effective 
than increasing the number of elements with fixed grid points 
in each elements to obtain a better accuracy and a higher conver- 
gent rate. Therefore, only the minimum number of elements 
enough to consider all the discontinuities on the plate is sug- 
gested to use in analysis. 

T o  e x a m i n e  t h e  i n f l u e n c e s  o f  t h e  r e l a t i v e  t h i c k n e s s  o n  t h e  

convergence and accuracy of the differential quadrature element 
method results, the SFSF rectangular plate is analyzed again. 
The numerical results solved by the differential quadrature ele- 
ment method for the square plate with different relative thick- 
nesses are given in Table 5. It is found from Table 5 that the 
convergent rates of the differential quadrature element method 
results will be obviously improved as the relative thickness of 
the plate is increased. 

4 Numerical  Examples  
Based on the convergence studies above, the differential 

quadrature element method is now applied to analyze several 
bending problems of Reissner-Mindlin plates with different dis- 
continuities which otherwise can not be solved directly by the 
differential quadrature method. To ensure the accuracy of the 
computed results, l I × 11 unevenly spaced cosine mesh pattern 
is used for each element. Some of the differential quadrature 
element method results, where possible, are compared with the 
exact analytical solutions or finite element method solutions to 
further verify the accuracy of the present method. 

4.1 Example 1: A Simply Supported Square Plate Sub- 
jected to the Patch Load. The first example analyzed by 
the differential quadrature element method here is a simply 
supported square plate subjected to the patch load as shown in 
Fig. 4. The numerical results are presented in Table 6 and the 
comparison of the present solution for the thin plates ( h / a  = 

0.01 ) with the exact solutions obtained using theoretical formu- 
las (Pilkey, 1994) is also shown in this table. Excellent agree- 

q 

U 

! 
q 

Fig. 4 A simply supported square plate subjected to a patch load 

Table 6 Numerical results for a simply supported square plate under a 
patch load over a rectangle (u = v) a 

v /ca wc ~ ,  ~,. 0-x, ~,,, 
0.2 0.01 0.43493 0.84964 0.84964 [ 0.01667 -0.23875 

0.2 exact b 0.43455 0.84697 0.84697 - -  -0.23875 

0.2 0.1 0.47191 0.84964 0.84964 0.01668 -0.23875 

0.2 0.2 0.58395 0.84964 0.84964 0.01668 -0.23875 

0.5 0.01 2.13348 2.94360 2.94360 0.10196 -I.33495 

0.5 exact b 2.13219 2.94504 2.94504 - -  -1.33495 

0.5 0.1 2.26157 2.94360 2.94360 0.10196 -l.33495 

0.5 0.2 2.64974 2.94360 2.94360 0.10196 -1.33495 

0.8 0.01 3.70586 4.46838 4.46838 0.23808 -2.72893 

0.8 exact b 3.70389 4.46731 4.46731 - -  -2.72893 

0.8 0.1 3.90031 4.46837 4.46837 0.23805 -2.72903 

0.8 0.2 4.48954 4.46837 4.46837 0.23804 -2.72907 

W, = w, D/(10-3x qa4); ~" = Mx,./(10"2× qa2); ~-y, = My,./(10"2x qa2); ~- = 

Q.,,,/(qa); ~ -  t = Mxy 1/(lO'2×qa2)' where Qxm and Mxyl are the shear force, Q~ at x y  ' 

the mid-side o f x  = 0 and the twisting moment at the comer x = 0, y= 0. 
b Exact thin plate solution obtained using theoretical formulas (Pilkey 1994). 

ments have been achieved. It is observed that the values of all 
the normalized central deflections and moments, the shear forces 
at the midpoint of side x = O, and the twisting moments at the 
corner x = O, y = 0 increase with the dimensions of the loading 
area. The relative thickness seems to bear very slight influence 
on the moments and shear forces, but the value of the central 
deflection rises as the relative thickness increases. 

4.2 Example 2: A Uniformly Loaded Square Plate With 
Mixed Boundaries. The second example analyzed is a uni- 
formly loaded square plate with combination of clamped, simply 
supported, and free boundaries as shown in Fig. 5. The numeri- 
cal results are given in Table 7 for different relative thickness. 
The finite element solutions generated by the computer software 
package ANSYS 5.3 are also tabulated for the purposes of 
comparison. One can see that the agreements are excellent for 
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Fig. 5 A uniformly loaded square plate with mixed discontinuous bound- 
aries 

Table 7 Numerical results for a uniformly loaded square plate with mix- 
ture boundary conditions (cl = c2 = ½a) * 

h/a 0.01 0.l 0.2 

solution present FEM" present FEM ~ present FEM" 

W,. 2.13333 2.10513 2.55008 2.51538 3.42764 3.38374 

W~ 0.15055 0.15300 0.40066 0.39056 0.99227 0.97492 

~ -  2.77060 2.77666 2.93697 2.92900 3.03741 3.03547 

~ -  3.30007 3.28833 3.45242 3.42967 3.57844 3.54900 

~-y,. 0.37852 0.38755 0.35755 0.35505 0.22406 0.22264 

"W, = w~ D/(10"°x qa"}; W~ = w~'O/(lO'~x qa'); M-., = Mx~/(10"x qa'); ~"y= 
My,./(10"zx qa2); ~ - =  M~/(10"2x qa2). where w~ is the deflection at the mid-side 

ofx = O. 
bThe finite element results were generated using ANSYS 5.3, shell 93 element was 
selected and 2821 grid points (actual number of active DOF is 15994) were 
used. 

q 

! =_ 

Y 

 ii4 }, I ...... ....... , 
0 a 

Fig. 6 Uniformly loaded square plate with CSCS outer boundaries and 
a free central square cutout 

all the deflections and moments. This has verified the applicabil- 
ity of the differential quadrature element method in solution of 
this kind of problems. 

4.3 Example 3: A Uniformly Loaded Rectangular Plate 
with a Rectangular Cutout. The last example given here is to 
analyze the rectangular plate with the discontinuous geometrical 
domain such as the cutout by the differential quadrature element 
method. A uniformly loaded square plate with the CSCS outer 
boundaries and a free central square cutout as shown in Fig. 6 
is considered. The numerical results for the deflections at the 
three points, 1, 2, and 3, as shown in Fig. 6, the moment, /~, ,  
and the shear force, O~ at the midpoint of side x = 0 (point 4), 
are tabulated in Table 8. The present differential quadrature 
element method results are compared with those obtained using 
finite element method, and again the agreement has been found 
to be very good. 

Table 8 Numerical results for a uniformly loaded square plate with 
CSCS outer boundaries and a free central square cutout (cl = c2 = 0,5a)" 

h/a W t 

0.01 0.62224 

FEM b 0.63372 

0.1 0.76822 

FEM b 0.77234 

0.2 1.13237 

FEM b 1.13852 

w2 ; w3 1 u , ,  Q,  
1.15595 I 0.60430 ' -4.10040 0.30396 

1.15888 - -  -4.04230 - -  

1.44426 0.75273 -4.09502 0.31157 

1.42645 - -  -4.04067 - -  

2.06526 1.09995 -3.88612 0.30930 

2.20142 - -  -3.88267 - -  

a Wi = wl/)/(10-~x qa¢); W2 = w~/9/(10 "~x qa"); W 3 = w3 D/(10 "j× qaq); 
M'-x4 = Mx4/(10 "z× qa2); Q-~, = Q~4/(qa). where 1, 2, 3 and 4 stand for 

the four points on the plate as shown in Fig. 6. 
SThe finite element results were generated using ANSYS 5.3, shell 93 
element was selected and 2230 grid points (actual number of active 
DOF is 12474) were used. 

5 Conc lus ion  
In this paper, the two-dimensional differential quadrature ele- 

ment method has been developed for the bending analysis of 
Reissner-Mindlin plates by combining the domain decomposi- 
tion method with tile two-dimensional differential quadrature 
method. The reliability of the bending solutions computed in 
this study using the differential quadrature element method has 
been established through convergence studies for different 
boundary conditions in light of the element refinement and the 
grid point refinement in each element, in addition, the reliability 
of the differential quadrature element method solutions has been 
further established by comparing with analytical solutions. 

The differential quadrature element method has been success- 
fully applied to analyze several bending problems of Reissner- 
Mindlin plates with different discontinuities including the dis- 
continuous loading, mixed boundaries, and cutouts. The accu- 
racy and applicability of this method have been examined by 
comparing with the existing solutions obtained using analytical 
or other numerical methods. It is found that the differential 
quadrature element method possesses both the advantages of 
differential quadrature method and the flexibility of the finite 
element method. 
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Nonlinear Theory for Composite 
Laminated Shells With 
Interfacial Damage 
Interfacial damage is incorporated in the proposed nonlinear theory .[br composite 
laminated shells. A spring-layer model is employed to characterize damaged inter- 
faces spanning from perfect bonding to different degrees of imperfect bonding in 
shear. By enforcing compatibility conditions for transverse shear stresses both at 
interfaces and on two bounding surfaces of a laminated shell, only five unknowns 
are needed for modeling its behavior. The principle of virtual work is used to derive 
the governing equations, which are of 14th order in lines of curvature coordinates, 
variationally self-consistent with seven prescribed boundary conditions. This theory 
includes the conventional higher-order zigzag model for a perfectly bonded shell as 
a special case. Numerical results' provide a physical understanding of the effect of 
interracial damage on bending and buckling responses of  composite laminated shells. 

1 Introduction 
Damage in composite laminates may take many forms at 

different geometric scales. At the reinforcements-matrix level, 
damage can include fiber fracture, matrix cracks, and degrada- 
tion of fiber/matrix interfaces. At the ply level, it can include 
bond deterioration and nucleation of microcracks pertinent to 
layer interfaces. In the former case, much micromechanics- 
based research has been completed. By contrast, research on 
the effects of damaged composite laminates at the ply level, 
despite its importance, appears to be in the early stages. 

Composite materials are used in all kinds of engineering 
structures, medical prosthetic devices, electronic circuit boards, 
and sports equipment. A comprehensive review can be found 
in the detailed coverage presented by Reddy (1997) for the first 
time of traditional theories and refined theories of laminated 
composite materials. Recently, Cheng et al. (1996a, b, 1997) 
proposed linear and geometrically nonlinear theories for com- 
posite laminated plates incorporating interracial imperfections. 
Numerical examples revealed the important influence of dam- 
aged interfaces on linear bending, buckling, and vibration be- 
havior of laminated plates, as well as on their static large- 
deflection characteristics of yon Karman's type. The well-devel- 
oped higher-order zigzag theory, or termed as the equivalent 
single-layer theory (Reddy and Robbins, Jr., 1994), for com- 
posite laminated plates with perfect interfaces (Di Sciuva, 1992; 
Gaudenzi, 1992; Cho and Parmerter, 1992, 1993; He, 1993) 
can be recovered as a special case of those presented by Cheng 
et al. (1996a, b, 1997). In a separate development, Schmidt 
and Librescu (1996) presented a similar theory which was based 
on a piecewise linear variation of inplane displacements. As an 
alternative way to assessing the proposed theoretical model us- 
ing numerical results, the paper made some remarks on several 
counterparts of general theorems in three-dimensional elasticity. 

This paper is an extension of the previous work on plates 
(Cheng et al., 1996a, b, 1997) to composite laminated shells 
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in general configurations, where the reference surface of the 
shells has an arbitrary geometry and each lamina is anisotropic 
and reflectional symmetry of materials is only assumed in sur- 
faces parallel to the shell reference surface. Exact representation 
of displacement variation through the thickness of a laminated 
shell renders the incorporation of the interfacial damage, which 
is then modeled linearly by the use of a spring layer. The re- 
quirement for transverse shear stresses being zero on the two 
bounding surfaces and continuous across each interface is ac- 
commodated so that there is no need for the use of shear correc- 
tion factors. 

Although the term "damaged interface" is emphasized in 
this paper, the proposed theory could also be widely applied 
with significant ramifications for practical laminated structures, 
including those in the presence of interphase, i.e., a very thin 
adhesive layer between adjacent laminae. One purpose of the 
interphase material is to increase the interfacial bonding 
strength, while another purpose is to reduce the residual stresses 
generated from curing process so as to prevent premature delam- 
ination. Where this theory is applied for such materials, interfa- 
cial parameters would be micromechanically estimated and ex- 
pressed in terms of properties and microstructures of the in- 
terphase material. 

2 General Expression of Displacements 

Consider an undeformed laminated shell, as shown in Fig. 
1, consisting of k homogeneous anisotropic layers of uniform 
thickness in a curvilinear coordinate system { 0 i } (i = 1, 2, 3), 
where 03-axis is normal to the shell surface. For convenience, 
the undeformed bottom surface of the shell is chosen as the 
reference surface defined by 03 = 0. The bottom surface (m = 
0), the k - 1 interfaces (m = 1 . . . . .  k - 1) and the top surface 
(m = k) are denoted by °")~(m = 0 . . . . .  k) in the sequence. 
Thus, the range of the ruth layer in the 03-direction is [o, ~)h, 
(re)h], where ('~h(m = 0 . . . . .  k) is the distance between ~')~ 
and (°~fL Obviously, (°)h = 0, ~k)h = h, where h is the total 
thickness of the shell. 

In what follows, a comma followed by a subscript denotes 
a partial derivative with respect to the corresponding spatial 
coordinate. The Einsteinian summation convention applies to 
repeated indices of tensor components, with Latin indices rang- 
ing from 1 to 3 while Greek indices over 1 and 2. 

The displacement vector V(0) of any point of the shell can 
be expressed as (He, 1994, 1995) 
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Fig. 1 Geometry of a laminated shell 

02 

k-1 
V(0) = ~ [(m+')V(0) -- ( m ~ v ( O ) I H ( O 3  - (ruTh), (1) 

m=0 

where (re)V(0) is the displacement vector of the mth layer with 
(°)V(0) -= 0, and H ( O  ~ - ("~h) is the Heaviside step function. 
Taylor expansion of ("~V(0) (m = 0 . . . . .  k) with respect to 
0 3 gives an alternative form of Eq. ( 1 ) as 

k - I  
V ( 0 )  = ~ ~ ( m ) u ( n ) ( o  1 , 0 2 ) ( 0 3  --  ( m ) h ) n H ( O  3 - (ruTh), ( 2 )  

m-1 n=0 

(m)U(")(0~, 0 ~) = -~- (m+~)V(")(0~, 0 ~, ( ' ) h )  
n! 

--  L ( m ) v ( n ) ( o  1 ' 0 2, (re)h) ' (3) 
n!  

where the following term has been retained, but excluded for 
perfect interfaces as by He (1994, 1995), 

(m)Av(0~, 0 ~) -= (m)U(°)(0~, 0 ~) = ('+ ~)V(01 , 0 ~, (")h) 

- (m)v(01, 0 ~, (m~h). (4) 

This term implies that the displacements are allowed to be 
discontinuous across each interface, so as to provide a possible 
incorporation of damaged interfaces of laminated shells, such 
as bond deterioration or even delamination. The case of perfect 
bonding corresponds to this term being a null vector. 

Let the covariant base vectors a~ and contravariant base vec- 
tors a g of the reference surface and the space covariant base 
vectors g~ and contravariant base vectors g~ be introduced in 
the undeforrned state of the shell, with 

a~ × a2 
a 3 = a 3 -  [al xa2----------l' g. = # ~ a f ,  g 3 = a 3 ,  

gf  = (#  l )~a .  ' g3 = a 3, (5) 

where #~ denotes the shifter tensor generalized for composite 
laminated shells which, as shown by Naghdi ( 1963 ), is nonsin- 
gular. #~ and its inverse, denoted by (#  l)~, are expressed as 

#~ = 6~ - 03b~,  (#-~)~ = _1 efxe~./z~, (6) 
# 

where 6~ is the mixed Kronecker delta function, e fx and e~,. are 
the two-dimensional permutation tensors, and 

# = det (#~),  b~ = b~,a f'~, 

bar = - a ~ .  a3.f = a~. as,f, (7) 

in which b~ is the mixed curvature tensor and b ~  is the coeffi- 
cient of second fundamental form of the reference surface (0)~, 

according to differential geometry. The components of the met- 
ric tensor for the undeformed reference surface are 

aaf  = aa '  ant, a . 3  = a . .  a3 = 0,  a33 = a3"  a3 = 1, 

a "f = a  ~ ' a ' ,  a " 3 = a  ~ . a  3 = 0 ,  a 3 3 = a  3 . a  3 = 1, (8) 

where a . f  is also called the coefficient of the first fundamental 
form of the reference surface in the theory of the differential 
geometry. The components of the spatial metric tensor for the 
shell space are connected with their counterparts of the reference 
surface by 

g.f  = /z~#~a~,p, gc~3 = g.3 = 0, g33 = g33 = I. (9) 

The displacement vector V(0) of the shell can be expressed 
in terms of the spatial and their shifted components as 

V = V.g" + V3g 3 = yea ~ + v3 a3 ,  (10) 

V~ = #gyp, V3 = v3. (11) 

The relationships between covariant differentiation of the space 
components of the displacement tensor and their surface coun- 
terparts referred to (°)~2 are expressed as (Naghdi, 1963; Li- 
brescu, 1975) 

g~llf  = ~ ( V ~ l f  - buf l )3 ) ,  gcdl3 = /A21)~,.3, 

V311. = v3,. + b~v~,, V3113 = v3a, (12) 

where the double and single vertical lines designate covariant 
differentiation with respect to the space and surface metrics, 
respectively. 

In view ofEq. (10),  Eq. (2) can be rewritten in the following 
surface component form: 

k--I 
vj(O i) = ~ ~ ~m)U}n)(O")(03 -- (m)h )nH(03  - (re)h). (13) 

m - O  n 0 

3 F o r m u l a t i o n  o f  B o u n d a r y  V a l u e  P r o b l e m  
Interracial damage between adjacent laminae can he modeled 

by a mathematical surface across which material properties 
change discontinuously, with the interracial tractions being con- 
tinuous while the displacements are discontinuous (see, e.g., 
Aboudi, 1987; Achenbach and Zhu, 1989; Benveniste and Dvo- 
rak, 1990; Dvorak and Benveniste, 1992; Hashin, 1990; Qu, 
1993a, b; Zhong and Meguid, 1996). To characterize the dam- 
aged interfaces in the evaluation of composite behavior, one 
simple approach is to use a linear spring-layer model as follows: 

o-'°3(0 p, ("~h +) = ~rf3(0 p, (" )h-) ,  

O'33(0P ,  ( r e )h+)  : O-33(0 p, O n ) h - ) ,  

(m = 1 . . . . .  k -  1), (14) 

( m ) ~ g  ~ = (m)R~(OP)o- fg (oP  ' (re)h) ' 

( m ) A v  3 = (m)R33(OP)O-33(O; ' (re)h), 

(m = 1 . . . . .  k -  1), (15) 

where ~r ~ is the component of the second Piola-Kirchhoff stress 
tensor, (m)R.f and (re)R33 in Eq. ( 15 ) represent the spatial compli- 
ance coefficients of the mth spring-layer interface (m~fL It is 
clear from Eq. (15) that a perfect interface corresponds to (m)Raf 
= 0 and (re)R33 = 0, while ("'~R,~ ~ ~ and °n)R~3 ~ ~ represent 
complete debonding, i.e., ~r ~3 = 0 on ("~2. From this point of 
view, a damaged interface may be modeled by finite values of 
("~R,/~ and ("~R33. The fact that the interface parameters (m)R~f 
and ("~R33 depend upon 0 p implies that the degree of the interfa- 
cial damage over (m~[~(m = 1 . . . . .  k - l ) may be nonuniform. 

When (m)R33 = 0 in conjunction with finite values of ("~R,f, 
this constitutive relation of the interface (m~f~ means relative 
sliding between the two adjacent surfaces, but no separation. 
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Table 1 Central deflection and stresses of an infinitely long three-ply (90 deg/O deg/90 
deg) laminated circular cylindrical panel under sinusoidal loading (~ = ¢/3) 

S Ren (1987) XavieretaL(1993) R = 0 R =  0.2 R = 0.4 R = 0.6 
2 - ~ 0 1.436 1.0878 1.10533 1 . 2 0 2 5 9  1 .25766  1.28591 
4 ~ ) ( ~ ,  ) 0.457 0.4410 0.44452 0.54059 0.63062 0.71158 

10 0.144 0.1426 0.14291 0.16496 0.18957 0.21633 
50 0.0808 0.0810 0.08078 0.08170 0.08276 0.08397 

100 0.0787 0.0788 0.07856 0.07879 0.07906 0.07936 
500 0.0773 0.0779 0.07767 0.07768 0.07769 0.07770 

42 ~ t - - x  0) 0.01770"0347 0.019780'04901 0.04922 0.05430 0.05758 0.05962 
- ~ ) ~ 6 '  0.01977 0.02294 0.02599 0.02879 

10 0.0100 0.01005 0.01003 0.01064 0 .01133  0.01208 
50 0.0080 0.00801 0.00799 0 .00801  0.00804 0.00807 

100 0.0079 0.00789 0.00787 0.00787 0.00788 0.00789 
500 0.0078 0.00782 0.00779 0.00779 0.00779 0.00779 

2 x 0.0871 0.01974 0.02006 0.02207 0 .02341  0.02429 
4 ~011(~, h) 0.0293 0.01352 0.01357 0.01553 0.01741 0.01915 

10 0.0115 0.00896 0.00895 0.00944 0 .01001  0.01064 
50 0.0079 0.00785 0.00783 0.007~5 0.00788 0.00791 

100 0.0078 0.00781 0.00779 0.00779 0.00780 0.00781 
500 0.0077 0.00779 0.00778 0.00778 0.00778 0.00778 

2 - ~ 0 3.467 4.886 4.92227 5 .4 3 0 0 1  5.75782 5.96208 
4 - a o : ) ( ~ ,  ) 1.772 1.972 1.97720 2.29398 2.59858 2.87875 

10 0.995 1.003 1.00324 1.06380 1 .1 3 2 5 6  1.20831 
50 0.798 0.799 0.79859 0 .8 0 0 9 1  0.80365 0.80680 

100 0.786 0.787 0.78675 0.78733 0.78800 0.78878 
500 0.780 0.779 0.77925 0.77927 0.77930 0.77933 

2 - ~ h 2.463 1.968 2.00591 2.20682 2.34146 2.42922 
4 ~o~)(~' ) 1.367 1.350 1.35745 1.55258 1 .74105  1.91505 

10 0.897 0.894 0.89452 0.94436 1 .0 0 1 0 2  1.06350 
50 0.782 0.783 0.78267 0.78490 0.78753 0.79056 

I00 0.781 0.779 0.77891 0.77947 0.78014 0.78090 
500 0.768 0.778 0.77769 0 .7 7 7 7 1  0.77774 0.77777 

2 _ h 0.394 0.200 0.19779 0.12417 0 .07401  0.04069 
4 ~ ( 0 , Z )  0.476 0.447 0.44602 0.39784 0.35088 0.30719 

10 z 0.525 0.524 0.52388 0.51370 0.50204 0.48912 
50 0.526 0.525 0.52533 0 . 5 2 4 9 1  0 .52441  0.52384 

100 0.523 0.524 0.52340 0.52330 0.52318 0.52303 
500 0.525 0.522 0.52153 0.52153 0.52152 0.52152 

Furthermore, the free-sliding case can be achieved by setting 
~"OR~ ~ oo with (re)R33 = 0. When °"~AV3 < 0, this mathematical 
model results in a physically impossible phenomenon because 
one constituent would have to penetrate another, as noticed by 
Achenbach and Zhu (1989) and Qu (1993b). This violates the 
compatibility requirements and therefore the model is appar- 
ently unreasonable for such a case. However, the normal stress 
~r 33 for the shell problem under consideration is assumed to be 
negligibly small compared with other stress components, so that 
it is ignored in this paper as in most other theories for plates 
and shells. This automatically leads to an identity Eq. (14)2 
and a vanishing displacement jump ( m ) ~ v  3 from Eq. (15)2, 
regardless of the value of the interface parameter (re)R33, There- 
fore it seems reasonable to characterize interfacial damage in 
shear by use of this spring layer model. 

For most shell problems transverse normals do not experience 
significant extensions and therefore it is assumed, without sig- 
nificant loss of accuracy, that v3 is independent of the thickness 
coordinate. Although theories higher than third order for lami- 
nated shells may be proposed on the basis of the general repre- 
sentation of the displacement variation (13), they are not used 
in the absence of debonding because the extra accuracy achieved 
is so little that the effort required to solve the equations is not 
justified. Therefore, in view of (m)~xV3 = ( " ~ V 3  = O, (m  = 1, 
. . . .  k - 1 ) from Eqs. ( 11 )z and ( 15 )2, the displacement model 
of the shell can be approximately expressed by truncating Eq. 
(13) as 

v.(O ~) = u~ + ~0.0 3 + ~0.(03) 2 + ~7.(03) 3 
k-I  

+ ~ [ ( ' ) A V ,  + (m)ua(03 -- ( m ) h ) ] H ( 0 3  -- ( ' ) h ) ,  
m=l 

v3(O i) = u3, (16) 

where ~°)ul°3, C°)u~X), ~°)u~2~, ~°~u~33, °"Dun°), and Cm~u~l~ in Eq. 

( 13 ) have been replaced by the quantities u~, ~b., qo~, ~7., ~')zXv., 
and ~'~u~, respectively. Of course, theories developed for calcu- 
lating an extreme case of damage, i.e., general delamination, 
need more terms than are retained by Eqs. (16) (see Gu and 
Chattopadhyay, 1996). 

Since small initial deviations from perfect geometry may 
have a significant influence on responses of structures, the exis- 
tence of an initial stress-free geometric imperfection, which 
refers to the transverse displacement V 3 °, is assumed, By con- 
vention, the transverse deflection V3 is then measured from the 
imperfect surface, The Lagrangian strain components eu, in the 
sense of von Karman partial nonlinearity, and the second Piola- 
Kirchhoff stress components of the shell can be obtained from 
(see Librescu, 1975) 

1 
e.~ = i(V~ii ~ + V;~ii ~ + V311.V311~ + V311.V 0 0 3lip + V 311,V311/~), 

1 
ea3 = g(Vall3 + V311,~), e33 = V3113, ( 1 7 )  

O" cab nc~B~Pe~p, o- a3 a3~3 = = 2E ew3, (18) 

where E eJkt is the spatial component of the elasticity tensor asso- 
ciated with an elastic anisotropic body, and H "~p = E "~p 
-- Eap33E33Wp/E3333. Equations (18) hold valid only under the 
assumptions that each layer possesses elastic symmetry with 
respect to surfaces parallel to the reference surface and that cr 33 
is vanishingly small, 

The compatibility conditions of transverse shear stresses on 
the two bounding surfaces of the shell, as well as the relation- 
ships characterizing the damaged interfaces, are now used to 
reduce the number of unknowns in Eq. ( 16)~. The absence of 
tangential tractions on (0)f~ and (~)~2 yields, through Eqs. (16), 
(12)2,3, (17)2, and (18)2, 
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Table 2 Central deflection and stresses of an infinitely long two-ply (0 deg/90 deg) lami- 
nated circular cylindrical panel under sinusoidal loading (,¢, = ~r/3) 

S Ren (1987) Xaviere taL(1993)  R = 0 R = 0.2 R = 0,4 R = 0.6 
2 _ z 2.079 1,534 1.74234 1 . 7 9 9 5 4  1 .8 3 2 7 0  1.84517 
4 ~3~(7, 0) 0.854 0.7196 0.75743 0.78164 0.80454 0.82582 

10 ~ 0.493 0.47)0 0.47754 0.48173 0.48608 0.49057 
50 0.409 0.4090 0.40836 0.40852 0.40869 0.40887 

100 0.403 0.4039 0.40312 0.40316 0 .40321  0.40325 
500 0.399 0.4002 0.39943 0.39943 0.39943 0.39944 

2 0.1610 0.07760 0.09546 0.08874 0.08266 0.07740 
- tr 0 4 -dr<m(- 7 ,  ) 0.0960 0.07026 0.07376 0.07146 0 .06911  0.06675 

o 10 0.0693 0.06490 0.06528 0.06487 0 .06443  0.06395 
50 0.0601 0.06000 0.05991 0.05989 0.05987 0,05985 

100 0,0592 0,05930 0.05916 0.05916 0.05915 0,05915 
5 0 0  0.0587 0.05867 0.05855 0,05855 0.05855 0.05855 

2 0.0960 0.03814 0.03831 0.04018 0.04168 0.04282 
4 ~m~(7,h) 0.0407 0.02694 0.02692 0.02759 0.02826 0.02891 

10 0.0250 0.02285 0.02281 0.02293 0.02306 0.02320 
50 0.0218 0.02181 0.02168 0.02168 0.02169 0.02169 

100 0.0216 0.02164 0.02159 0.02159 0.02159 0.02160 
500 0.0215 0.02158 0.02153 0.02153 0.02153 0.02153 

2 0.644 0.310 0.38184 0.35498 0.33065 0.30961 
- n" 0 4 -~r~)( '~, ) 0.384 0.281 0.29504 0.28584 0.27643 0.26701 

10 u 0.277 0.260 0.26114 0.25949 0 .25771 0.25582 
50 0.240 0.240 0.23963 0.23956 0.23949 0.23941 

100 0.237 0.237 0.23665 0.23664 0.23662 0.23660 
5 0 0  0.234 0.234 0.23421 0 . 2 3 4 2 1  0 .23421  0.23421 

2 z 3.348 3.803 3.83110 4.01756 4.16790 4.28171 
4 ~ ) ( ~ , h )  2.511 2.687 2.69225 2.75929 2.82594 2.89095 

10 2.245 2.279 2.28135 2.29339 2.30617 2.31965 
50 2.165 2.166 2.16784 2.16833 2.16885 2.16942 

100 2.158 2.158 2.15913 2.15925 2.15938 2.15952 
500 2.153 2.151 2.15297 2.15298 2.15298 2.15299 

2 _ 3h 0.851 1.133 1.14997 1.20927 1 .2 6 2 0 0  1.30673 
4 ~z~l(0,--7-) 0.87t 0.987 0.97451 0.99246 1 .01086  1.02933 

10 ' ~  0.879 0.899 0.89870 0.90172 0.90497 0.90846 
50 0.869 0.870 0,87028 0,87040 0.87053 0.87067 

100 0.867 0.867 0.86732 0.86735 0.86739 0.86742 
500 0.865 0.865 0.86503 0.86503 0.86503 0.86503 

O~ = - u 3 , .  - b ~ u v ,  

2h £~rlo = ~S ~ ~ 

1 k 
-I- ~ ~ Luo~r~/~(")a"~--av B + (6~ __ ("')~.0,("'}..,,,~) "eJ~, (19) 

m = l 

where ~,~ = #~ Io ~ 2h/3 with its determinant fz q~ 0 as proved 
by Naghdi (1963).  Therefore, Eq. (19)~ gives 

k - - I  

rl. = d~qo o + ~ (e'~<")&v, + ("~m)ue) ,  (20)  
m = l  

in which 

d~ = e~xew"(2hb~ - 3~5})(26~ - h b ~ ) l ( 9 h £ ) ,  

e~ = e~xe~°~(2hb* - 3 6 * ) b ~ / ( 9 h ~ ) ,  

~,of ~ e~e~o~(2hb, × ,~ _ = - 36,)(6~o (m)hb~,)/(9h2~). (21) 

The conditions (14)~ and (15)1 for damaged interfaces lead to 
the following 4 (k  - 1 ) linearly algebraic equations involving 
the 4 (k  - t )  unknowns (°u~ and {*~v~, (i = 1 . . . . .  k - 1), 
through Eqs. (16) ,  (19)~, (20) ,  (11) ,  (12)~,3, (17)a, (18)2, 
(14)1, and (15)~: 

_ .4/3 ('2~R(i)~2 ((i+l)E"3~3 {i)E"3~3){ [26~(°h - b~(i)h 2 + ,×~ . . . . .  

i 
- 2b~(i)h3)]qoa + ~ [b~(m)Av0 + (6g - (m)hb~,)(')ua] 

m=l 
k-] 

+ (36~(°h2 - 2b,(i)h 3) ~ (ex~("°Avo + (m)f~(m)uo)} 
m [ 

+ (i)E~3~3[b~(i)Av~ + (6~ - (i)hb~)(i)u,o] = O, 

(i) ~ ( i )  Z~Xl) a = (i) R p v (  OP)(bi+ 1)E"3~3 { ~ - ~ r  9,~(i)t,,. - b~(i)h 2 

i 
+ dx~(36~(°h 2 - 2bX~(~)h3)]qpv + ~ [b~,(')Av,~ + (6~ 

m = l  

k - I  

- (m)hb'~(')~o) u/~]" + (3~Sx~(i)h 2 - 2bX~( i )h  3 ~ (ex~(")~v~ 
m = 1 

+ °">f(°~)u,)},  (i  = 1, . . ,  k - 1), (22)  

where ~o#~ = #~ I C J ' h .  These equations determine the relation- 
ship between <°u., ~)£xv~ and ~Px as 

(ilUa = (i)a~tpx, (i),~xloa = {Oc]q&, (i = 1 . . . . .  k -  1), (23) 

in which the coefficients (~a~ x and (°C~ depend only on the 
material elasticity properties and geometry of each lamina and 
the characteristics of the interracial damage. 

Table 3 Critical buckling load/~/for a three-ply {90 deg/O deg/9O deg) 
laminated circular cylindrical panel (S = 4, L/h = 20, • = ~r/3) 

Xav ie re taL(1995)  R =  0 R = 0.2 R = 0.4 R = 0.6 
0.1 5.3829 5.42679 4.10149 3.61733 3.45825 
0.5 4.6339 4.63564 3.74557 3.24852 2.95808 
1.0 4.0960 4.06401 3.34937 2.87716 2.55433 
5.0 3.1263 3.02073 2.67520 2.38744 2.14638 

Table4 Critical buckling load/~ for a two-ply (90 deg/0 deg) laminated 
circular cylindrical panel (S = 4, LIh = 20, • = ~r/3) 

Xav ie re taL(1995)  R = 0 R = 0.2 R = 0.4 R = 0.6 
0.1 5.2566 5.17588 5.17055 5.16553 5.16082 
0.5 4.5219 4.03686 3.98506 3.94384 3.91279 
1.0 3.3517 3.16232 3.07356 2.99694 2.93187 
5.0 1.7319 1.66979 1 . 5 7 9 7 1  1.49615 1.41912 
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Substitution of Eqs. (19)1, (20),  and (23) into Eq. (16)~ 
yields the following displacement expression: 

v.  = ,tz~u;~ - 03u3.. + h~99 ~, (24) 

in which 

h~ ~ haB(O i) = ~ ( 0 3 )  2 -I- g~(03) 3 

k I 

+ ~ [(')C~ + °")a~(03 -- ( ' )h ) ]H(O 3 - ("')h), (25) 
m -  I 

k 1 

g~ : tie + Y~ (e~(m)c~x + ('")f2("')a~). (26) 
m I 

By using the displacement expressions (24) and ( 16)2, the 
associated strain and stress components can be obtained from 
Eqs. (17) and (18) but are not explicitly given here. 

From the principle of virtual work, the nonlinear static funda- 
mental equations are obtained as 

M(I)"~i~ - N (~)" - R (~)~ = O, 

M(2).,i.  ' + N(~)3 + RC2~.l. + p3 = 0, 

M(3)a~l/~ - N (2)c~ - N (3)" - R (3)" = 0, (27) 

and the associated boundary conditions are specified as 

n~3M (I)ap, or u. ,  

n o(M(2)~l. + Rt2)~), or u3, 

n~M ( 3 )aB, o r  ~o,~, 

n~M ~2)"~, or u3,,, (28) 

where 

Yl ~. ~×t~,. ~, h.l~,  b,.~],udO 3, 

fl = -k#xn,.3 + b x h , , ) # d O ,  

= #~Ltl,,~, 0 3 ~ ,  h~]~dO 3, 

[R(t) ", R(2) ", R(3) "] 

fo" = aa~(V311~ + V311x)[b/~#,~, #~, b~h,~]#dO , (29) 

p3 = ~>/z<k)p3 + ~0)p3, (30) 

with <0~p 3 and ~ p  3 denoting normal loads exerted on the bottom 
surface (0)~ and top surface ~)~, respectively. 

The set of governing Eqs. (27),  if expressed in terms of 
five generalized displacement functions u~ and ~p, in lines of 
curvature coordinates (ensuring a~2 = b~2 = 0) ,  can be shown 
to have 14th order, which is variationally self-consistent with 
the seven prescribed boundary conditions (28).  For brevity, 
however, the displacement-based governing equations are not 
explicitly given herein. 

An appropriate s implif icat ion/~ ~ ~,~ can be taken for shal- 
low shells. As a result, 

go~ ~ aa~, ga~ ~ aa,O, 

= ~ = 1 - 2HO 3 + K(03) 2 ~  1, (31) # 

where g = det (g~) and a = det (a0), while H = ~ " 5b~ and K 
= det (b~) denote the mean curvature and the Gaussian curva- 
ture of the reference surface (o~f~, respectively. 

By collapsing the general shell theory presented here to the 
flat-plate limit, the theory given by Cheng et al. (1996b) is 
recovered. As another limit case where the interracial parame- 

ters and the initial imperfection vanish, this theory exactly re- 
duces to the one given by He (1995) for perfectly bonded shells, 
which is also similar to those given by Di Sciuva and lcardi 
(1993) and Xavier et al. (1993). 

4 Il lustrative Examples  and  Discuss ion  
In the case of fiat laminated plates, the influence of interracial 

damage on the global and local behavior of composite laminates 
has been reported by Cheng et al. (1996a, b, 1997). This work 
is an extension to examine the behavior of composite laminated 
shells featuring interracial damage. Because of the complexity 
of the governing equations, a simple example, a circular cylin- 
drical laminated panel with inner radius r0, length L, and central 
angle <I), is used to verify the primary contribution of this theory. 
The panel is simply supported at edges 0 ~ = 0, L and 02 = 0, 
• . Uniform interracial damage is assumed. Each lamina has the 
tbllowing stiffness properties: 

EL/Er = 25, GL'flEr = 0.5, 

Grr/E.r = 0.2, uLr = urr = 0.25, (32) 

where E is the tensile modulus, G is the shear modulus, u is 
Poisson's ratio, and the subscripts L and T refer to the directions 
parallel and normal to the fibers, respectively. Unless specified 
otherwise, each lamina has same thickness. 

Under the action of normal pressure (k)p3 = Po sin (TrOl/L) 
sin (rcO2/(b) on the outer surface of the panel, a closed-form 
solution of the linear bending problem has the following form: 

7r0 ~ " 7r02 
[ U l ,  ~ l l  : [ U l ,  (#11 c o s  T sm -~- - ,  

7r0 ~ lr02 
[u2, ~P2] = [U2, ~2] sin - ~ -  cos -~- - ,  

71-0 1 71-0 2 
u3 = U3 sin - -  sin - -  (33) 

L ~ 

The solution for linear buckling of such a panel subjected to 
constant uniaxial edge compression/V/~H in the 0S-direction 
can be expressed in the same form as (33),  such a buckling 
mode being assumed to enable the present results to be com- 
pared with those given by Xavier et al. (1995) for perfect 
interfaces. From these expressions, exact solutions can easily 
be given for linear bending and for linear buckling (taking 
P0 -~ 0). For brevity, an overview of the procedure for obtaining 
closed-form solutions is not given. Of course, the physical com- 
ponents of tensors in the orthogonal bases should be finally 
transformed by 

1 1 

1 
e<ij~ - ~/gng~J e°' a<u > = g~Hgjjcr IJ, (34) 

where an upper case subscript takes the same value as the 
corresponding lower case index, but no implicit summation ap- 
plies between them. 

Based on a three-phase model and generalized self-consistent 
scheme for random composites, a theoretical evaluation of in- 
terfacial damage parameters was made by Hashin (1991) in 
terms of interphase characteristics for isotropic deformation. 
However, such an efficient scheme only applies to random com- 
posites. Further theoretical work is needed on the estimation 
of the interfacial parameters, which requires a knowledge of 
interracial microstructures and is beyond the scope of this paper. 
In an alternative way they can be determined experimentally 
either by direct shear test or through statistically equivalent 
macroscopic moduli for imperfectly bonded layered media (Lai 
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et al. 1997), in turn to determine the interracial damage parame- 
ters. 

Numerical results are tabulated in Tables 1-4  and plotted in 
Figs. 2 -4  by taking, for each interface, (m~R<,~) = 6 ,nRh/Er ,  
where R is a dimensionless quantity. The following dimen- 
sionless quantities are used: 

(2) h 
S =  r ° + 0 . 5 ,  X = - - -  1, 

h ~J~h 

]00ET _ 10 ET______ L 
V<2) - pohS 3 V{2), ri~{3 ) -- pohS 4 V(3), 

1 1 
= - -  O'{ll), ~{22} = - -  O'(22), ff{ll) poS2 poS 2 

~(23) = ~ < 2 3 ) ,  . M =  1 - - 
p o a  

(35) 

The exact three-dimensional elasticity solution for bending of 
an infinitely long circular cylindrical panel excluding interfacial 
damage (Ren, 1987) is also used for comparison. As usual, 
the transverse shear stresses have been obtained through an a 
posteriori calculation, i.e., ~r~ll~ = 0. Some comments on the 
use of the a posteriori calculation of such components by means 
of three-dimensional equilibrium and constitutive relations were 
given by Noor and Peters (1989), Noor and Burton (1990), 
and Lee and Cao (1996). 

The present predictions of deflection and stresses for perfect 
interfaces (R = 0), as shown in Tables 1 and 2, are generally 
close to the exact solution (Ren, 1987) for S -> 4. These bending 
results and buckling load shown in Tables 3 and 4 are also very 
close to the results from a slightly different theory for perfect 
shells (Xavier et al., 1993, 1995) for all values of S, where 
they have confirmed the high accuracy in comparison with 
Reddy and Liu's (1985) higher-order theory and some other 
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theories in this case. The dimensionless central deflection and 
buckling load in Tables l - 4  show the overall elastic response 
of laminated panels. As expected, interfacial damage reduces 
the rigidity of panels, and hence leads to an increasing bending 
deflection and a decreasing buckling load. The variation of 
stresses in Tables 1 and 2 and Figs. 3 and 4 for bending prob- 
lems gives a better understanding of the way in which local 
elastic response is affected by the progressive interfacial dam- 
age. As in the case of flat plates, Fig. 4 confirms that the interfa- 
cial stress decreases with increasing interfacial parameter. This 
is significant for small values of S. 

As an extreme case of damaged interfaces, delamination may 
allow laminates failure initiated by detamination buckling and 
thus greatly reduce the load capacity. Indeed, transverse normal 
stress often precipitates failure of laminates, which implies that 
transverse normal stress is an important cause of delamination. 
Therefore an appropriate kinematic description which allows 
for separation and slipping is required to model the delamination 
in laminated composite shells, as proposed by Gu and Chatto- 
padhyay (1996) where more terms are retained than those trun- 
cated as Eq. (16) in this paper. Because of neglect of transverse 
normal stress in the present theory, perfect bonding in the thick- 
ness direction is assumed and hence it is impossible to study 
the case of separation delamination by this theory. However, it 
could possibly be improved for analyzing the case of shearing 
delamination. 

5 Conc lus ions  
Interracial damage at the ply level of composite laminates is 

modeled by a spring layer. By invoking the principle of virtual 
work and an approximate displacement model, a geometrically 
nonlinear theory is presented for composite laminated shells 
featuring damaged interfaces. The proposed theory has the same 
advantages as conventional higher-order theories. Moreover, the 
third-order zigzag theory for a perfectly bonded shell can be 
recovered from this theory in the special case of vanishing 
interracial parameters. An an extension of composite laminated 
plates, numerical results provide further confirmation of how 
the interracial damage affects the overall and local responses 
of composite laminated shells. 
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Conservation Principles for 
Systems With a Varying Number 
of Degrees-of-Freedom 
This paper is the third in a trilogy dealing with simple, nonholonomic systems which, 
while in motion, change their number of degrees-of-freedom (defined as the number 
of independent generalized speeds required to describe the motion in question). The 
first of the trilogy introduced the theory underlying the dynamical equations of motion 
of such systems. The second dealt with the evaluation of noncontributing forces and 
of noncontributing impulses during such motion. This paper deals with the linear 
momentum, angular momentum, and mechanical energy of these systems. Specifically, 
expressions for changes in these quantities during imposition and removal of con- 
straints are formulated in terms of the associated changes in the generalized speeds. 

1 Introduction 
A new approach to the analysis of systems with a varying 

number of degrees-of-freedom has been introduced by Djerassi 
(1994, 1997). Such systems undergo, while in motion, imposi- 
tion or removal of constraints. A spacecraft docking at a space 
station, and a robot endeffector coming into contact with a work 
surface, provide examples of systems undergoing imposition of 
constraints; whereas an aircraft ejecting a pilot seat, and an 
athlete throwing a ball, provide examples of systems undergoing 
removal of constraints. With reference to such systems, three 
phases of motion can be identified: a phase where the motion 
is defined as unconstrained, a phase where the motion is defined 
as constrained, and a transition phase, where constraints are 
imposed or removed. It is the imposition and/or removal of 
these constraints which causes a change in the number of de- 
grees-of-freedom. 

Three-phase motions are governed by the following sets of 
equations: (a) Equations governing the motion in the uncon- 
strained phase; (b) Constraint equations; (c) Certain relative 
velocities of particles and/or relative angular velocities of rigid 
bodies, if the ejection of these objects is under consideration; 
(d) Conditions, the satisfaction of which initiates the transition; 
(e) Equations governing the motion of the constrained system; 
and ( f )  Equations enabling the evaluation of the changes in the 
generalized speeds associated with the transition. Traditionally, 
the latter are generated by the integration of both sides of the 
motion equations of the system in its unconstrained phase, the 
integration time limits indicating the duration of the transition 
(which is assumed to be infinitely small). However, the integra- 
tion is preceded by the introduction of contributions to the 
equations of motion of certain forces, namely forces associated 
with imposition or removal of constraints. These forces are 
assumed to be of unbounded magnitudes and of infinitely small 
duration. Thus, the integration gives rise to algebraic equations 
with two sets of unknowns. One set comprises changes in the 
generalized speeds, and another comprises impulses associated 
with the indicated forces; and the latter must be eliminated 
before the former can be evaluated (Levinson and Kane, 1983; 
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Fitz-Coy and Cochran, 1986; Rhody et al., 1993). In accordance 
with the new approach introduced by Djerassi (1994), algebraic 
equations are generated, that contain changes in the generalized 
speeds as the only unknowns. This end is achieved if the equa- 
tions being integrated during the transition phase are those gov- 
erning the constrained motion (rather than those governing the 
unconstrained motion). Thus, the indicated impulses do not 
appear in the algebraic equations, and hence are referred to as 
"noncontributing" impulses. With the changes in the general- 
ized speeds in hand, one can simulate the entire three-phase 
motion (Djerassi, 1994), and, in addition, evaluate quantities 
of interest in the transition phase, such as "noncontributing" 
impulses (Djerassi, 1997). 

Here, expressions for changes in the linear momentum, angu- 
lar momentum, and mechanical energy during the transition 
phase are obtained in terms of changes in the generalized 
speeds. Two kinds of systems, called noncontact force system 
(denoted here as NCF system) and contact force system (de- 
noted here as CF system), are discussed. Particles of an NCF 
system exert no contact forces on particles not belonging to 
the system throughout the three-phase motion. A CF system is 
defined as one with particles exerting such contact forces during 
at least two of the phases. 

The paper is organized as follows. The theory of imposition 
and removal of constrained is reviewed in Section 2. Expression 
for the changes in the linear momentum, angular momentum and 
mechanical energy during the transition phase are developed in 
Section 3 for NCF and for CF systems. An example is used 
throughout the paper, illustrating the use of the theoretical re- 
suits. 

2 Theory of Imposition-Removal of Constraints: 
Main Results 

Let S be a simple nonholonomic system of v particles Pi (i 
= 1 . . . . .  v) of mass mi possessing ff generalized coordinates 
qt . . . . .  qn and n (where n < if) generalized speeds Ul . . . . .  un 
in N, a Newtonian reference frame. Let S undergo three phases 
of motion as follows. Phase a occurs in the time interval of 0 

t -~ tl. The motion of S in N is defined as unconstrained, 
and is governed by n dynamical equations, namely, 

F r + F *  = 0  ( r =  1 . . . . .  n) (1) 

where Fr and F* are the rth generalized active force and the 
rth generalized inertia force for S, respectively. Phase b occurs 
in the time interval tl -< t <- t2, where t2 - tl is "infinitely 
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small," e.g., as compared with time constants associated with 
the motion of S. Then m constraints of the form 

P 

uk = Y, Ckru , .+Dk  ( k = p  + 1 . . . . .  n )  (2) 
r 1 

are imposed on S, where 

p ~ n - m, (3) 

and Ckr and Dk are functions of q~ . . . . .  q~ and time t. The 
configuration of S in N remains unaltered, that is, 

q,.(t2) = qr ( t , )  (r  = 1 . . . . .  if), (4) 

and the number of independent generalized speeds is reduced 
from n t o p .  The relations between uk(t2) ( k  = p + 1 . . . . .  n ) ,  
the values of the dependent generalized speeds at t2, and uk(t2) 
( r  = 1 . . . . .  p ) ,  the values of the independent generalized 
speeds at t2, is given by 

p 

uk(t2) = Y,  Ck,.ur(t2) + D~ (k = p + l . . . . .  n ) .  (5) 
r = l  

Additionally, if the magnitudes of the active forces contributing 
to Eqs. ( 1 ) are all bounded during Phase b, and if points of S 
exert contact forces on one another, and possibly on RB, a set 
of particles with motions unaffected by contact forces exerted 
on them by particles of S, then p relations between us(t2) (s = 
1 . . . . .  n)  and u s ( q )  ( s  = 1 . . . . .  n )  are given by 

~ (m,.~ + Ck, mks)ZXU, = 0 (r  = 1 . . . . .  p) ,  (6) 
s - 1  k = p + l  

where 

AU, ~ u,(t2) - - u , ( t l )  (S = 1 . . . . .  n) .  (7) 

Here, m~, the element in row r, column s of the mass matrix 
associated with Eqs. (1) ,  is defined 

v 

m/:, ~- - ~  m~vf ,"  v~, (r ,  s = 1 . . . . .  n) ,  (8) 
i = 1  

where Vr p~ -~ O v e 4 O u ,  Ve~ ~-- OvP4Ous, V e~ being the velocity of 
P~ in N. Equations (5) ,  (6) ,  and (7) furnish m + p relations 
between u~( t2) and u,(  t~) ( s = 1 . . . . .  n )  that enable evaluation 
of the former, given the latter, with Ck,, Dk ( k = p + 1 . . . . .  
n; r = 1 . . . . .  p )  and mr~ (r ,  s = 1 . . . . .  n)  calculated at t~. 
Phase c occurs when t -> t2. Then the motion of S in N is 
def ined  as constrained, and is governed by p dynamical equa- 
tions, namely, 

n 

F ~ +  F*  + Y~ Ck~(Fk+ F~)  = 0 ( r  = 1 . . . . .  p) .  (9) 
k-p+l 

It is then said that the constraints in Eqs. (2) are imposed  
on the motion of S, and the process is called impos i t ion  o f  
constraints .  

Now, it may occur that Eqs. (2) are satisfied at t = t~, that 
is, 

P 

uk( t l )  = Y~ Ck,.u,.(tl) + Dk (k  = p + 1 . . . . .  n ) ,  (10) 
r = l  

equations which, combined with Eqs. (5) and (7) ,  lead to 
p 

A u k  = ~ Ck,.Au~ (k  = p  + 1 . . . . .  n ) .  (11) 
r 1 

Equations ( 11 ) and (6) constitute a set of n homogeneous equa- 
tions in n unknowns Auk (s = 1 . . . . .  n) ,  having the unique, 
null solution, which, by virtue of Eqs. (7) ,  yields 

u,(t2) = u , ( q )  (s  = 1 . . . . .  n ) .  (12) 

Equations (12) imply that no impulsive forces arise; therefore, 
the process is called soft  imposition of constraints. If, on the 
other hand, Eqs. (2) are not satisfied at t = t~, then Eqs. (5) ,  
(6) ,  and (7) ,  when solved for us(t2) (s  = 1 . . . . .  n ) ,  given 
u,(t~) ( s  = 1 . . . . .  n ) ,  decree changes in the values of the 
generalized speeds. These changes are associated with impul- 
sive forces; therefore the process is called hard  imposition of 
constraints. 

When the chain of events described above occurs in reverse 
order, then Eqs. (9) govern Phase a. Phase b is governed by 
Eqs. (4) ,  (6) ,  and (10) ,  and Phase c is governed by Eqs. (1) .  
It is then said that the constraints in Eqs. (2) are r e m o v e d  from 
S, and the process is called r e m o v a l  o f  constraints .  

Now, it may occur that uk(t2) ( k  = 1 . . . . .  n )  are interrelated 
as follows: 

p 

u k ( t z ) = Y ,  C k r u , . ( t z ) + D ~ + E ~  ( k = p + l  . . . . .  n) ,  (13) 
r - I  

where Ek (k = p + 1 . . . . .  n)  is a function of ql . . . . .  q, 
and t. If 

E~ = 0 (k = p  + 1 . . . . .  n) ,  (14) 

then Eqs. (13) reduce to Eq. (5) which, with Eqs. (10) ,  (7) ,  
and (6) yield Eqs. (11 ) and (12).  As before, Eqs. (12) imply 
that no impulsive forces arise; therefore, the process is called 
soft  removal of constraints. If, on the other hand, Eqs. (14) are 
not satisfied, then Eqs. (6) ,  (13),  and (7) ,  when solved for 
us(t2) (s  = 1 . . . . .  n ) ,  given us(t1) (s  = 1 . . . . .  n ) ,  decree 
changes in the values of the generalized speeds. These changes 
are associated with impulsive forces; therefore the process is 
called hard  removal of constraints. 

Example I. Consider the system S described in Fig. 1, con- 
sisting of an axisymmetric, spinning top A, and of a rigid body 
E, initially undergoing an unconstrained motion in N. To dis- 
cuss motions of S in N proceed as follows. Let a/, ei and ni (i 
= 1, 2, 3) be three sets of three dextral, mutually perpendicular 
unit vectors fixed in A, E, and N, respectively, and let 

A i j ~ e i . a i  ( i , j = 1 , 2 , 3 ) ,  E i j - ~ n i . e j  ( i , j =  1 , 2 , 3 ) .  

Moreover, let A* and E* be the mass centers of A and E, 
respectively; and let q4, qs, and q6 be the el, e2, and e3 compo- 
nents of p~/a*, the position vector of A* relative to E, the 

n2 

~e2 

Fig. 1 A system undergoing three-phase motion: An example 
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projection of E* on plane P of E. Similarly, let q~o, qJ~, and 
q~2 be the n~, n2, and n3 components of  the position vector of 
E* relative to a point fixed in N. Define u~ . . . . .  u~2, 12 general- 
ized speeds for S, as follows: 

U, .~EwA'a, .  ( r =  1 , 2 , 3 ) ,  b / , . ~ E v A * ' e r - 3  

( r  = 4, 5, 6) (a)  1 

U , . & N o j E ' e ,  - 6 ( r = 7 , 8 , 9 ) ,  Ur&NVE*'n,.-9 

( r  = 10, 11, 12) ( b )  

where ~w a and NWE are the angular velocities of A and E in N, 
and evA* and NVL'* are the velocities of A* in E and of E* in 
N, respectively. Hence, 

EojA : Ulal  4- u2a2 4- u3a3 ,  EvA* = u4el + use2 4- u6e3 ( c )  

NWt; = u7el + use2 + u9e3, EVE* = u~on~ + u~n2 + uj2n3.  (d) 

The kinematical equations for S are c]~ = u,. ( r  = 4, 5, 6; 10, 
11, 12) and Ai3 = AI2U3 - Ai3u2 . . . . .  1~33 = E31bt8 -- E32u7, 
relationships based on Poisson's kinematical equations. The 
dynamical equations are obtained by substitution in Eqs. (1) 
for n = 12. If the moments of inertia for A and E are chosen 
to be central principal, and if A~ (i = 1, 2, 3) are defined A~ 
*-- A l iU 7 + A2iIA8 4- A3ibl 9 (i = 1, 2, 3),  one obtains, for r = 1, 
4, 7, and 12, the following respective equations: 

- - I A I ( U l  4- /~1) --  (IA3 -- IA2)(U2 4- a2) (u3  4- a 3 )  = 0 

- - m a ( u 4  4- EIIbll0 4- E21IAll 4- E31/A12) 

4- mA(USU9 --  U6bt8 -- gq4/lPE*/A*l) = 0 

--1m~(a~ + A~)A,~ - Ia~(a2 + A2)Ai2 

-- IA3(a3 + fll3)Al3 - 1E3bt7 

--(1A3 -- IA2)(U3 + A3)(Uz + A2)AII  

- (1A= -- 1A3)(U~ + AI)(U3 + A3)AI2 

--(IAz -- 1A~)(U2 + A2)(U~ + Ai)A~3 - (1E3 -- IE2)UsU9 = 0 

- -mA(E31a4 4- E32u5 4- E33/A6) - -  (mA 4- mE)/J l2  

--mA[E32(U4U9 -- b/6/~/7) - -  E31(UsH9 --  b/6b/8) 

--  E33 ( u 4 u  8 --  b/5H 7) ] = 0 (8 )  

where self-explanatory notations are used to denote inertial 
properties. Also, it is assumed that E* exerts on A* a force 
F E*/a* = --mzgpE*/a*/lpE*/a* l, where pe*/a* is the position vec- 
tor from E* to A*, a n d g  is the gravitational constant. 

Next, let pa*/e and p~/R be the position vectors from A * and 
from E to R, the vertex of A, respectively. Then 

pa*m = ra3, p~/R = q4e~ + q~e2 + q6e3 + ra~ ( f )  

where r is the distance from A* to R. If h denotes the distance 
from R to P ,  then 

h ~- pE/R.  e3 = q6 + rE33. ( g )  

Now, suppose the motion of S in N is simulated, starting with 
the following initial conditions: A~; = E~ = 6~ (i ,  j = 1, 2, 3), 
q 4 ( 0 )  = qs(0)  = 0, q 6 ( 0 )  = 0.2 m ,  q l o ( 0 )  = q l l ( 0 )  = q 1 2 ( 0 )  
= 0 m, u~(0) = u2(0) = 0.2 rad/sec, u3(0) = 104.72 rad/sec, 
u6(0) = -0 .1  m/sec, u,.(0) = 0 ( r  = 4, 5, 7 . . . . .  12) (so that 
with r = 0.04 m, h (0)  = 0.16 m). Then A approaches P,  and 
h becomes smaller with time. Denote by q the time h becomes 
zero; and suppose that at t~ point R hits P,  establishes contact 
with P between tl and t~, and remains in contact with P through- 
out the remainder of the motion. This means that ErR" e3, the 

e3 component of  ErR, the velocity of R in E, vanishes from t2 
onwards; and, since EVR is given by 

E v R =  u4e I 4- b/5e 2 4- b/6e 3 4- u2ra~ - u l r a 2 ,  (h )  

the constraint equation V'vR" e3 = 0 becomes, in view of Eq. 
(h) ,  

u6 = rA32ut - rA31u2. ( i )  

Hence, Eq. ( i)  plays the role of  Eqs. (2) with m = 1 (note that 
the dependent variable is u6, not u~2 as implied by Eqs. (2) 
when n = 12 and m = 1; and that Eqs. (6) and (9) have to be 
rearranged accordingly). C6,. ( r  = 1 . . . . .  5, 7 . . . . .  12) can be 
determined by inspection of Eq. ( i ) ,  and read 

C61 = rA32, C62 = - r A 3 1 ,  Ces = 0 

(s = 3, 4, 5, 7 . . . . .  12). ( j )  

Substitutions from Eqs. (e) and ( j )  into Eqs. (9) (rearranged) 
give rise to equations governing the constrained motion of S, 
i.e., when R is constrained to remain in contact with P.  These 
are 

F~ + F ~  + rA32(F6 + F ~ )  = O, 

F2 + F ]  - rA31(F6 + F ~ )  = 0 

F, .+  F,.* = 0 ( r =  3, 4, 5 , 7  . . . . .  12). (k) 

The changes in the generalized speeds associated with the transi- 
tion can be evaluated when equations obtained by substitutions 
from Eqs. (e) and ( j )  in Eqs. (5) and (6) (rearranged) are 
solved, in conjunction with Eqs. (7) ,  for Au,. (r  = 1 . . . . .  12). 
I f  ma = 0.1 kg, IA1 = 1A2 = 0.00003, Ia3 = 0.00002 kg - m 2, 
me = 100,000 kg, IF~i = le2 = 30, and IE3 = 20 kg - m 2, the 
following changes in the generalized speeds result in 

Aul = -0.05801,  Auz = -0 .6624,  

Ab/3 = A/A 4 = Ab/5 = 0, Au 6 = 1800 

Au7 = 6.0267 10 7, AU8 = 2.811 10 7, 

d) 

Aur = 0 ( r  = 9, 10, 11), Au12 = -0 .0018.  (m) 

Figure 2 shows Ul, u2, and u3, and Fig. 3 shows b/4, US, and u6 
as functions of time resulting from a one-second simulation, 
the transition occurring at t = 0.16 sec. 

Similarly, suppose S initially undergoes a constrained motion 
with R in contact with P ,  starting with the following initial 
conditions: Aij = E i j  = 5ii ( i , j  = 1, 2, 3),  q4(0) = qs(0)  = 0 
m, q6(0) = 0.04 m, ql0(0) = q11(0) = qj2(0) = 0 m, u~(0) 
= u2(0) = 0.2 rad/sec, u3(0) = 104.72 rad/sec, u,.(O) = 0 ( r  
= 4 . . . . .  12). Furthermore, suppose that after 0.5 sec, A is 
ejected from E so that %R(t2) = re3. Equation (h) is valid from 
t2 on, hence at t = t2 

re3 = u 4 ( t a ) e j  + us(t2)e2 + u 6 ( t a ) e 3  

+ u2(t2)ral - u~(t2)ra2 (n )  

, ~ 1 5 0 [  

; looF 

= 50 t 
0 

u3 

u l  ,u2 ,~ ,,~ ,~  ,'- ,~ 

0.5 
t [sec] 

Equations associated with the examples are denoted with letters. Fig. 2 u l ,  u = ,  a n d  u 3  in hard imposition of constraints 
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/ u4 
"~ 0 . . . .  

= .2 [ ~ 
u6 

0 0.5 
t [see] 

Fig. 3 u4, u~, and us in hard imposition of constraints 

,_~2 u4 

u5 

-4 
0 0.5 1 

t [sec] 

Fig. 5 u4, u~, and us in hard removal of constraints 

where v is a constant. If  both sides of Eq. (n) are dot multiplied 
by e3, one has 

u6(t2) = rA31ul(t2) - -  rA31u2(t2) + v, (o)  

an equation playing the role of Eqs. (13) with E6 = v and 06  
= 0 (note that, if  evn = re3 not only at t2, but throughout the 
remainder of the motion, then E6 = 0 and D6 = v. Such a state 
of affairs involves an instantaneous change in the constraint 
equation, i.e., form Eq. ( i)  to u6 = rA32u~ - rA3~u2 + v; and, 
since no change in the number of  degrees of freedom is in- 
volved, the problem is beyond the scope of this paper). Thus 
Eqs. (k) govern the constrained motion of S, Eqs. (e) govern 
the unconstrained motion, i.e., the motion following the ejec- 
tion; and Eq. ( i)  is the constraint being removed. The changes 
in the generalized speeds associated with the removal of  this 
constraint are obtained by substitution from Eqs. (e) in Eq. (6) 
(rearranged) in conjunction with Eqs. (o)  and (7).  The follow- 
ing changes in the generalized speeds, associated with the transi- 
tion, are obtained if v = 6 m/sec: 

Aul = -167.5 ,  Au2 = 7.995, 

Au3 = A u 4 =  Au5 = 0 ,  A u 6 = 2 2 5 0  (p) 

A u 7 = - 1 . 6 6 4  10 -4 , Au8 = 2.123 10 -5, 

Au~ = 0 ( r  = 9, 10, 11), Au~2 = -0.00225.  (q) 

Figure 4 shows u~, u2, and u3, and Fig. 5 shows u4, us, and u6 
as functions of time resulting form a one-second simulation, 
the transition occurring at t = 0.5 sec. 

In what follows, expressions for changes in the linear momen- 
tum, angular momentum, and mechanical energy of S during 
imposition and removal of  constraints are formulated in terms 
of the associated changes in the generalized speeds. 

3 Linear Momentum, Angular Momentum, and Me- 
chanical Energy 

3.1 N C F  Systems. 

3.1.1 Preliminaries. Let P~ and P2 be two particles of  S, 
chosen so that S*, the mass center of S, does not lie on the line 
passing through P~ and P2; and let B be a reference frame, and 
b~, b2, and b3 be three dextral, mutually perpendicular unit 
vectors fixed in B and oriented such that the plane defined by 
S*, P~, and P2 is perpendicular to b3, with b~ parallel to the 

'E 200 I 

looI 

= -200 / 
0 

,I//',I 
V L,V L,V ~,1 

0.5 1 
t [sec] 

Fig. 4 u~, u2, and us in hard removal of constraints 

line passing through S* and Pt. Define the six first generalized 
speeds for S as 

Us ~ NvS*" n, (s = 1, 2, 3) (15) 

H3+s A__ U~x)B.n s (S = 1, 2, 3),  (16) 

where NvS* is the velocity of S* in N, 'vw~ is the angular velocity 
of B in N, and ns (s = 1, 2, 3) are three dextral, mutually 
perpendicular unit vectors fixed in N. Hence z, 

NvS* = ulnl + u2n2 + u3n3 (17) 
(15) 

NcuB = u4n l  + usn2 + u6n3. ( 1 8 )  
(I6) 

Next, regard S as undergoing an unconstrained motion, and 
introduce u7 . . . .  , bt3v+3 as 

u7 ~ nvP, • b~, u7+ i & "V P2 " bi (i : 1, 2) 

u3i+k ~ ' v  p, 'b~ ( k =  1 , 2 , 3 ; i =  3 . . . . .  v), (19) 
v 

where "v P, is the velocity of  P~ in B. Note that, since Y. 
i=l 

minv p~ = 0, only 3v -- 6 of u7 . . . . .  u3o+3, say u7 . . . . .  u3~ are 
independent (hence u3v+t, u3~+2 and u3,+3 are dependent); and 
that when S is a simple nonholonomic system possessing n 
independent generalized speeds, then only n - 6 of u7 . . . . .  u3~ 
are independent. Now NVe,, the velocity of P~ in N, can be 
expressed as 

NVP ~ = NvS* + BVP ~ + N~, × rS,p~ (20) 

where rS*J', is the position vector of  Pi relative to S*; or, in 
view of Eqs. (17) and (18),  

NvP~ = Uanl + uzn2 + u3n3 + (u4nl + usn2 + u6n3) 

× r s - e ,+  Bye, (i = 1 . . . . .  v). (21) 

Moreover, NVe' can be expressed as (Kane, 1985, Section 2.14) 
n 

NvP' = Z Nv~" ur + Nvte~ (22) 
r=l  

where Nv,e.i is called the rth partial velocity of P~, and NV~ (r  
= 1 . . . . .  n) and NV~e~ are functions of q~ . . . . .  q,  and t. Thus, 
NV~' ( r  = 1 . . . . .  n) can be identified by comparison of the 
coefficients of Ul . . . . .  u, in Eqs. (21) and (22).  For r = 1, 
. . . .  6 one has 

Nv,P.' = n, ( r  = 1 , 2 , 3 ; i =  1 . . . . .  v) (23) 

Uv~'~, = n , .×  rS*P~ ( r =  1 , 2 , 3 ; i =  1 . . . . .  v), (24) 

equations which are not affected by the fact that only n - 6 of 
u7 . . . . .  u3~ are independent. Now, it is implied by Eqs. (19) 
that %P,(i = 1 . . . . .  v) in Eq. (21) are not functions of u~, 
. . . .  u6. If, in connection with three-phase motions, m con- 
straints having the form of Eqs. (2) are imposed on S so that 

2 Numbers appearing beneath expressions or equal signs refer to equations 
numbered correspondingly. 
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particles of S remain without contact with particles not belong- 
ing to S throughout the motion, then, Ul . . . . .  u6 play no part 
in Eqs. (2); that is, 

Ck,.=0 ( r =  1 . . . . .  6) (25) 
P 

uk = ~ Ck,.Ur + D~ (k = p + 1 . . . . .  n). (26) 
r=7  

Consequently, Eqs. (6), shown by Djerassi (1994) to be valid 
in this case, can be replaced with 

n 

mr~&u~. = 0 (r = 1 . . . . .  6) (27) 
s= l  (25) 

and 

i (m,, + ~ Ck,.m~,,)Aus = 0 (r = 7 . . . . .  p).  (28) 
.L 

s=l  k=p+l  

Similarly, Eqs. (27) and (28) apply if in Phase (a) S is subject 
to m constraints given by Eqs. (26), and if these constraints 
are removed from S during Phase b. 

3.1.2 Linear Momentum and Angular Momentum. Let L 
be the linear momentum of S in N, defined as 

L -+- i mi Nvej, (29) 
i=1 

and let H s* be the central angular momentum of S in N, defined 
a s  

HS* ~ i mi rs*P' X NVe'. (30) 
i=1 

Then imposition and removal of constraints are events occurring 
such that 

L(h)  - L(h )  = 0 (31) 

HS*(t2) - HS*(h) = 0. (32) 

Proof. L can be written 

i ic ° L L" nsns ~ mi NVei N P = = v . , ,n ,  
s--1 s=l  i=1 (29) (23) 

/:° i mi ( N e. v.¢n~ = Vr'U,. + NVf0" N e 
s= l  i=1 r = l  (22) 

+ 
= 2 - m,:~Ur + Z, mYvf, 'Nv~)n, .  

s= l  r = l  (8) i=1 

NV~ and NV.~ (S = 1, 2, 3; i = 1 . . . . .  U) are functions of ql, 
. . . .  q~ and t, so that in view of Eqs. (4) 

L(t2) - L(h )  = - ~  ( ~  mr, AuDns. (33) 
s= l  r = l  (7) 

The right-hand side of Eq. (33) vanishes by virtue of the first 
three of Eqs. (27); hence Eq. (33) reduces to Eq. (31) in 
connection with both imposition and removal of constraints. 

3 

Similarly, H s* = X H s*" n~ns so that, in view of Eqs. (30), 
s=l  

(24), (22), (8), and (4) one can show that 

I-IS*(t2) - HS*(tl) = - ( ~  m,..3+~#~XUr)ns. (34) 
s= l  r = l  

The right-hand side of Eq. (34) vanishes by virtue of the last 
three of Eqs. (27); hence Eq. (32) is established in connection 
with both imposition and removal of constraints. 

S in Example I is an NCF system. Substitutions from Eqs. 
( l ) -  (m) and ( p ) -  (q) in the left-hand sides of Eqs. (27), with 
mrs (r, s = 1 . . . . .  12) obtained from Eqs. (e), reveal that 

Eqs. (27) are satisfied. Consequently, Eqs. (31) and (32) are 
satisfied both in connection with impositions of constraints and 
in connection with removal of constraints. 

3.1.3 Mechanical Energy. Let K be the kinetic energy of 
S in N, defined 

v 
1 K ~- ~ ~ miNv P'' NVP'; (35) 

i=1 

let V, a function of qj . . . . .  qn and t, be a potential energy of 
S in N, and let E be the mechanical energy of S in N, defined 

E -~ K + V. (36) 

If 

and 

u 

miNv~, " [NvPi(t2) - gve,(h)] = 0 (37) 
i= 1 

Dkmks~XUs = 0 (38) 
s= l  k=p+l  

then imposition of constraints is an event occurring such that 

' ~ ~ mr~2xur~us, (39) E(t2) - E(h)  = 7 
r = l  s= l  

whereas removal of constraints is an event occurring such that 

' ~ i mrs~Ur~U,. (40) E(t2) - E(h)  = -7  
r = l  s=l  

The right-hand sides of Eqs. (39) and (40) comprise negative 
definite and positive definite quantities, respectively. Note that, 
if no prescribed motion is involved, then v, e, = 0 (i = 1 . . . . .  
u) and Dk = 0 (k = p + 1 . . . . .  n);  hence Eqs. (37) and (38) 
are satisfied indentically. 
Proof. Consider imposition of constraints first, and note that 
substitutions from Eq. (22) in Eq. (35) for t = t~ leads to 

'ira, t iM P, " K(h)  = ~ V r  U r ( t l )  + N v t P ' ] "  [ ~  NvsPiMs(tl  ) + N v f i l  

i=1 r = l  s = l  

or, when use is made of Eqs. (8), 

1 ~ ~ mrsUr(tl)us(t,) K(h)  = -g  
r = l  s= l  

v 

+ 2~ ml~vf, 'Nvei(h) -- E, (41) 
i=1 

o 
t where E, ~ g E m~Nv,Pi " gVf~. Similarly, for t = t2 

i=1 

1 N Pi K(h)  = i mi[]L (Nv~e' + Ckr Vk )u~(t2) 
i= 1 r = 1 k=p+ 1 

N P. V~, s(t2) + Nv~'] (42) 
k=p+ 1 s= 1 

an expression obtained with substitutions from Eq. (2) in Eq. 
(22), and then in Eq. (35). In view of Eqs. (8), Eqs. (42) 
becomes 

K(t2) = -½ ~ ~ (mrs + ~ Ck, mk~)u.~(t2)u,.(h) 
r = l  s= l  k=p+l  

-½~ i O,mk,u=,(t2) 
s= l  k=p+l  

+ i miNvf '" gve'(t2) -- E,. (43) 
i=1 
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Next, the following relationship is formed by the addition of 
all p of Eqs. (6) after the rth equation is multiplied with u~(t2) 
( r  = 1 . . . . .  p ) :  

(mr,, + ~ Ckrmks)Us(t2)u~(t2) 
r - I  s = l  k = p + l  

n n 

= ~ (m,., + ~ Ck,.mk,)u/tl)u~(t2). (44) 
r I s - I  k = p + l  

n n 

When £ £ D~mk,u.~(t~) is added to and subtracted from the 
s = l  k = p + l  

right-hand side of Eq. (44),  one obtains, after a rearrangement 
involving Eqs. (5) ,  

r = l  s = l  k - - p + l  

n n n 

= ~ m~su~(t2)u,(t,) - ~ ~ Okmk, us(h).  (45) 
r = l  s 1 s = [  k = p - I - I  

This relation leads, when used in Eq. (43) in conjunction with 
Eq. (38),  to 

n n 
1 

K(tz) = -~  Z Z m~,u,.(t2)u,(tl) 
r I s = l  

v 

+ ~ miNv~' " NVP'(h) -- E,. (46) 
i = 1  

Two alternative forms of K(t2), denoted R(h )  a n d / ~ ( h ) ,  can 
be introduced as follows: 

n n 
I 

K(t2) -- -~  ~ ~ m~.Ur(tl)u~(h) 
r = l  s = l  

v 

+ ~ miNv~' " NVP'(h) -- E, (47) 
i - I  

n n 
1 IT(t2) = --~ Z ~ mrsUr(t2)Us(t2) 

r = l  s = l  

+ i mffvf ' 'Nv~'( t2)  -- E,. (48) 
i = 1  

Equation (47) is identical with Eq. (46) in view of the fact that 
the mass matrix is symmetric (see Eqs. (8 ) ) ;  and Eq. (48) is 
the counterp_art of  Eq. (41) for t = h. The motivation for writing 
K(t2) and K ( h )  becomes apparent when K(t2) - K ( h )  is 
formed in the following manner: 

K(t2) - K ( h )  = - I T ( h )  + K ( h )  + K(t2) - K(f i ) .  (49) 

Then the right-hand side of  Eq. (49) reduces, in view of Eq. 
(37) and (7) ,  to the right-hand side of  Eq. (39);  and, because 
V i s a  function solely of ql . . . . .  q,, and t, then V ( t 2 )  = V ( t l ) ,  
and the validity of Eq. (39) is established. The right-hand side 
of Eq. (39) is negative definite because, by definition (Eqs. 
(8 ) ) ,  m~.,. < 0 (r  = s = 1 . . . . .  n) (Strang, 1980). 

The validity of Eq. (40) can be established similarly. Equa- 
tions ( 4 1 ) - ( 4 9 )  can all be rewritten with tl and I2 replacing 
one another. Thus, one can rewrite Eq. (41) for t = t2, Eq. (42) 
and (43) for t = t,; form Eq. (44) by multiplication with u,.(fi ) 
( r  = 1 . . . . .  p )  ; rewrite Eq. (45) using Eq. (10) instead of Eq. 
(5) ,  etc. 

It is finally worth noting that when soft imposition or soft 
removal of constraints is under consideration, then Eqs. (12) 
are valid, which means that v P ' ( / 2 )  = vPi(Ii) (i = 1 . . . . .  v), 
so that Eqs. (37) and (38) are satisfied identically, and the 
right-hand sides of Eqs. (39) and (40) vanish. 

Substitutions from Eqs. ( l ) -  (m) in Eqs. (39) yield E(t2) - 
E( t t )  = -0 .162  N - m ;  and substitutions from Eqs. ( p ) -  (q)  in 
Eq. (40) yield E(t2) - E ( h )  = 0.675 N - m .  Identical results 

are obtained if the mechanical energy of S is formulated in the 
usual manner, and evaluated at tl and h. 

3.2 CF Systems. 

3.2.1 Preliminaries. Here, the following assumption is 
made, namely, that throughout at least two of the phases, parti- 
cles of S exert contact forces on one another and on points of 
E, a rigid body moving in N. As before, S is assumed to be 
a simple, nonholonomic system of v particles, possessing n 
generalized speeds. Now, before linear momentum, angular mo- 
mentum and mechanical energy of S can be discussed in connec- 
tion with imposition and removal of constraints, one has to 
define conditions, satisfaction of which ensure that Eqs. (6) can 
be applied to S. To this end, let $1: be a simple, nonholonomic 
system of vE particles and n + 6 generalized speeds ff~ . . . . .  
G+6, consisting of a rigid body E of vlc - v particles, and of a 
system S of v particles, which is identical to, and undergoes a 
motion identical with that of S when E is fixed in N. Accord- 
ingly, define G~ ~ . . . . .  G+6 so as to describe the motion of E 
in N, and define ff~ . . . . .  if,,, so that, when E is fixed in N 

ff,.=u,. ( r =  1 . . . . .  n),  ff,,,~----0 ( k =  1 . . . . .  6). (50) 

Suppose that between t = t~ and t = h m constraints of the form 
P 

ffk = ~ Ckrff,+Dk ( k = p +  1 . . . . .  n) (51) 
r = l  

are imposed on SE, and that m constraints of the form of Eqs. 
(2) are imposed on S; and make analogous suppositions in 
connection with removal of constraints if Su and S undergo 
initially constrained motions. Now, particles of  S exert contact 
forces on particles not belonging to S (i.e., of  N),  and are 
acted upon by the associated reaction forces (themselves contact 
forces). The latter, like other active forces, contribute to Eqs. 
(1) ;  and, like other contact forces, are not bounded during 
Phase b. Hence, the requirement preceding Eqs. (6) is not satis- 
fied, and the use of Eqs. (6) for the evaluation of Ul(t2) . . . . .  
u,,(t2) leads to erroneous results. Similarly, particles of S-exert 
contact forces on particles of E. Here, however, all the particles 
in question belong to SF, and contributions from contact forces 
do not appear in equations corresponding to Eqs. ( l )  when 
written for SE. Hence, equations corresponding to Eqs. (6) can 
be used to evaluate g~ (t2) . . . . .  f f , ,+a(t2) .  These are 
n +  6 n 

[(m,., + M,.,) + ~ Ce,.(me., + Mk.,)IA< = 0 
,~ I k p + l  

( r  = 1 . . . . .  p , n  + 1 . . . . .  n + 6), (52) 

where A G  is defined similarly to Aus in Eqs. (7) ,  and where 
m,., and M,., (r ,  s = 1 . . . . .  n + 6) are contributions of S and 
of E to the mass matrix. Noting that M,, = 0 for r, s * n + 1, 
. . . .  n + 6, and that ff,,+t . . . . .  G+6 play no part in Eqs. (51) 
( h e n c e G ,  = 0 f o r k = p +  1 . . . . .  n , r =  n + 1 . . . . .  n + 6), 
one can replace Eqs. (52) with 

n + 6  n 

(m~, + ~ C~,.mk.,.)&G = 0 (r = 1 . . . . .  p)  (53) 
s = l  k = p + l  

and 
n +  6 

mrsAG + 
.s= 1 

* * + 6  

Mr.,.~lTs = 0 
s n +  1 

( r = n  + 1 . . . . .  n + 6). (54) 

Now suppose that Eqs. ( 5 3 ) - ( 5 4 )  are used to evaluate A~-~, 
. . . .  AG+6 for SE, and Eqs. (6) are used to evaluate Aul . . . . .  
Au,  for S. Furthermore, suppose that 

M i j > > m , . s ( i = j = n +  1 . . . . .  17+6 ;  

r , s  = 1 . . . . .  n + 6), (55) 
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which mean that the inertial properties of E exceed those of 
"significantly." Then 

Au,. = Aft,. ( r  = 1 . . . . .  n) (56) 

Aff,,+k = 0 (k = 1 . . . . .  6).  (57) 

Equations (57) indicate that neither imposition of constraints 
nor removal of constraints affect the motion of E;  and Eqs. 
(56) indicate that, under these circumstances, Eqs. (6) can be 
applied to S. 
Proof. Without a loss of generality, ff,,,+~ . . . . .  if,,+6 can be 
chosen in such a way that they all have the dimension of m/ 
sec, and 

M,: , .=0  r ~ s  ( r , s = n +  1 . . . . .  n + 6 )  (58) 

(such is the case if ff,,,~ ~ . . . . .  if,,+6 are defined as follows: if,,+, ~3 
NV'~*" e, (r  = 1, 2, 3), ff,,+l ~ v P~ "e3 - lz,,+<,, t~,+2 

V P3 " e I - -  LTn+ 4 and ff,,~3 ~ v e' " ez - if,,+5, where e,. ( r  = 1, 2, 
3), E* and NVE* are defined as in Example I, and P,  ( r  = 1, 2, 
3) are three points of E located with respect to E* at de,. ( r  = 
1, 2, 3), where d is a constant. Then NWF~ = (ff,,~le~ + ff,,+ze2 
+ N,+3e3)/d, Nve* = tTn~4nl + N,+sn2 + ~,+6n3. The motion 
equations follow straightforwardly, and satisfy Eqs. (58)) .  De- 
fining 33 as the 6 × 6 coefficient matrix of Aff,,+t . . . . .  Aff,,~ 6 
in Eqs. (54),  one may conclude that mrs + M~s~rs is the element 
in row r, column s of 3St ( r ,  s = n + 1 . . . . .  n + 6);  and that, 
in view of Eqs. (55),  the diagonal elements of M are signifi- 
cantly larger than the nondiagonal elements. Consequently, the 
elements of ~r-~, the inverse of M, designated M~ ~) (r ,  s = 
n + 1 . . . . .  n + 6) are related to those of 3J as follows: 

O(M}~7 j)) = O(Mij 1) ( r  = s ; i  = j  

= n +  1 . . . . .  n + 6 )  (59) 

O ( M ~  I)) = O(m,.~.M~ 2) ( r  -~ s ,  i = j 

= n +  1 . . . . .  n + 6 ) ,  (60) 

where O( .  ) denotes order of magnitude. Solving Eqs. (54) for 
A~,+~ . . . . .  A~,+6 one reveals that 

O(A~,+k/£xf f~)  = O(m,. ,Mij  t) (k = 1 . . . . .  6; r, s 

= 1 . . . . .  n ; i = j  = l . . . . .  6) ,  (61) 

so that in view of Eqs. (55),  Eqs, (57) are nearly satisfied. 
Moreover, using Eqs. (61) one finds that terms associated with 
s = n + 1 . . . . .  n + 6 in each of Eqs. (53) nearly vanish. 
Hence Eqs. (53),  when applied to SL,, become identical to Eqs. 
(6) when applied to S, a result validating Eqs. (56) in connec- 
tion with both imposition and removal of constraints. Moreover, 
suppose that R~ comprises a number of rigid bodies Ej . . . . .  
EN, each having inertial properties significantly exceeding those 
of S. If the steps leading to Eqs. (56) and (57) are carried out 
in connection with E~ . . . . .  EN, one at a time, then Eq. (56) 
remains valid, and equations analogous to Eq. (57) are valid 
in connection with each of Ej . . . . .  EN. Finally, if E is fixed 
in N, then Eqs. (57) are satisfied identically. Consequently, 
Eqs. (53) yield the same results for A~. as do Eqs. (6) for Au,. 
(r  = 1 . . . . .  n) ,  as indicated by Eqs. (56).  Thus, the require- 
ment preceding Eqs. (6) concerning particles of RB--here  com- 
prising E - - i s  justified; and a significant simplification is ob- 
tained, namely, the replacement of an n + 6 degrees-of-freedom 
system with one of n degrees-of-freedom. 

Example II. Suppose E in Fig. 1 is fixed in N (i.e., u7 -= 
0 . . . . .  u12 --- 0),  so that S, consisting now of A alone, undergoes 
three-phase motions similar to those in Example I. Note that 
here, a particle of S is in contact with a particle of N during 
two of the three phases. Accordingly, Eqs. (a)  and (c)  are valid 
i f E  is replaced with N (and ei with n~ (i = 1, 2, 3)) in these 
equations; and, assuming that A is subject to a gravitational 

force given by F = - m a g n 3 ,  one can show that the following 
equations govern the unconstrained motion of A in N: 

--IAlal  -- (Ia3 -- IA2)U2U3 = 0 . . . . .  --mA~6 -- mag = O. ( r )  

With reference to the constrained motion of A, Eqs. ( f ) - ( j )  
are valid if E is replaced with N (and ei with ni (i  = 1, 2, 3)) 
in these equations, if N, a point fixed in N, replaces E,  and if 
A o are redefined as ni • aj (i ,  j = 1, 2, 3). Moreover, the first 

five of Eqs. (k) are valid if Fr + F* ( r  = 1 . . . . .  6) are taken 
to be the respective left-hand sides of Eqs. ( r ) .  Now, consider 
an unconstrained motion of S starting with the same initial 
conditions fo rA  U ( i , j  = 1, 2, 3),  q,. ( r  = 4, 5, 6) and u,. ( r  = 
1 . . . . .  6) as in Example I. Then R comes into contact with P 
after 0.16 sec, and u, ( r  = 1 . . . . .  6) behave in a manner 
indistinguishable from that in Figs. 2 and 3. For, E in Example 
I is initially at rest, and relations (55) are satisfied by the entries 
of the mass matrix associated with Eqs. (e) in Example I. Hence, 
the system described in Example I can be regarded as playing 
the role of SE, and the changes in the generalized speeds re- 
sulting from the solution of Eqs. ( 5 ) - ( 7 )  in conjunction with 
Eqs. ( r )  and (i) ale identical with those in Eqs. ( l)  (obtained 
for St,), in agreement with Eqs. (56).  

Similarly, suppose A undergoes initially a constrained motion 
with R in contact with P ;  and that after 0.5 sec A is ejected in 
a manner characterized by Eqs. (o) with A3t and A32 redefined 
as n3" a~ (i = l, 2). Then, with the same initial conditions for 
Asj ( i , j  -- 1, 2, 3),  q,. ( r  = 4, 5, 6) and ur (r  = 1 . . . . .  6) as 
in Example l, the changes in the generalized speeds, evaluated 
by substitutions form Eqs. ( r )  and (o) into Eqs. (5) ,  (6) ,  and 
(13),  are as in Eqs. (p) ,  in agreement with Eqs. (56);  and u, 
( r  = 1 . . . . .  6) behave in a manner indistinguishable from that 
in Figs. 4 and 5. 

Note that if the inertial properties of E and A are of the same 
order of magnitude, and if S is defined as A alone, then the 
theory of imposition and removal of  constraints does not apply. 
However, one can always associate with S, here a CF system, 
an NCF s y s t e m - - f o r  which the theory applies--redefining S 
so as to include E,  as in Example 1. 

3.2.2 L inear  M o m e n t u m  a n d  A n g u l a r  Momen tum.  Imposi- 
tion and removal of constraints are events occurring such that 

L(t2) - L ( t l )  = llnl + I2n2 + /3n3 (62) 

HS*(t2) - HS*(tl) = /4nl + /_~n2 + I6n3 (63) 

where L is the rth generalized impulse, defined as (Kane, 1985, 
Section 7.8) 

f t  

Ir ~ F, dt.  (64) 
I 

Equations (31) and (32) can be regarded as special cases of 
Eqs. (62) and (63),  as NCF systems are special cases of CF 
systems. 
Proof. NAP', the acceleration of Pi in N can be written 

± 
OaP~ = Y~ NV~'" as + v, ,"  u~ + (65) 

(22)  s 1 s = l  

By definition, the rth generalized inertia force F*  is given by 
(Kane, 1985, Section 4.11) 

F *  -~ ~ NvPi "(--miNaP 0 
i=1 

v n n 
__ y ~  N P = mi vr,"  Z NV~'t2.~ + R* = Y, mr.,.8~ + R *  (66) 

i I s = l  (8 )  s = l  
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where 

R *  = - N e. Yes'us + ugcet'). 
i=1 s=l 

Because R* . . . . .  R* are bounded functions of time, then fi~ 
R *  dt  = 0 ( r  = 1 . . . . .  n ) ,  hence, 

F p d t  = mrs~us.  (67) 
t (66),(7) s=l  

When both sides of Eqs. (1) are integrated from tl to t2 one 
has, in view of Eqs. (64) and (67), 

L +  i r n r ~ A u ~ = O  ( r =  1 . . . . .  n ) .  (68) 
s=] 

Equations (68) indicate that the left-hand sides of Eqs. (27) 
are the generalized impulses for r = 1 . . . . .  6. These differ 
from zero when S is a CF system since Fr ( r  = 1 . . . . .  6) 
include contributions from contact forces exerted on particles 
of S by particles not belonging to S. Thus, Eqs. (62) and (63) 
are obtained by substitutions from Eqs. (68) in Eqs. (33) and 
(34), respectively. Note that applying Eqs. (27) to Se (see 
Section 3 .2 .1) - - then  n i s  replaced with n + 6 an d+~Xus with 

Affs--one obtains Eqs. (54). These reduce to L = E M,,Aff~ 
s = n +  l 

(r  = n + 1 . . . . .  n + 6) in view of Eqs. (61) and (68). 
Substitutions from Eqs. (1) and (p) ,  in conjunction with Eqs. 

( r ) ,  in the left-hand side of Eqs. (27), reveal that Eqs. (27) 
are not satisfied. Consequently, changes occur in both the linear 
momentum and in the angular momentum as in Eqs. (62) and 
(63), in connection with both impositions removal of con- 
straints. 

3.2.3 M e c h a n i c a l  Energy.  Equations (39) and (40) are 
applicable to CF systems if Eqs. (37) and (38) are satisfied, 
and if particles of S exert contact forces on one another and on 
particles of R~. 
Proof. If Eqs. (37) and (38) are satisfied in connection with 
SE, then Eqs. (39) can be applied (see Section 3.2.1 ), yielding 

i ~ n+6 

E( t2)  - E ( h )  = 
r = l  s=l r= l  s=n+l 

n+6 n n+6 n+6 
1 ~ 1 + ~ ~ m,~,Aa,Aff~ + ~ ~ ~ mr~Aff, Aff~ (69) 

r ~ n + l  s=l  r=n+l  s=n+l 

Suppose, in addition, that particles of S exert contact forces 
on one another and on particles of RB. Then Eqs. (61) can be 
used to show that the last three terms on the right-hand side 
of Eq. (69) are negligible as compared with the first; and the 
first term is identical with the right-hand side Eq. (39) by 
virtue of Eq. (56). Equation (39) can thus be applied to S. 
An analogous proof applies to Eq. (40). In summary, Eqs. 

(39) and (40) are applicable if the theory of imposition and 
removal of constraints is. 

Substitutions from Eqs. (1) and (r)  in Eqs. (39) yield E ( h )  
- E ( h )  = -0.162 N - m ;  and substitutions from Eqs. (p) and 
(r)  in Eq. (40) yield E ( t z )  - E(t l )  = 0.675 N-m.  These results 
are identical with those obtained in Example I, as implied by 
Eqs. (69). 

Suppose the mechanical energy, the linear momentum and 
the angular momentum of a system undergoing a three phase 
motion are evaluated throughout Phases a and c. Then the 
changes in these quantities during the transition can be evalu- 
ated. Suppose that, in addition, these changes are evaluated with 
the aid of Eqs. (39), (or (40)) ,  (62), and (64), and compared 
with the changes evaluated earlier. Identical results support the 
following conclusion, namely, that the theory of imposition and 
removal of constraints has been properly used. These tests are 
reminiscent of energy and momentum associated integrals, used 
to test numerical integration of equations of motion. Finally, 
note that the change in the mechanical energy is meaningful in 
its own right, for it comprises the energy which must be dissi- 
pated by, or supplied to the system in question during transition, 
if the total energy of the system (of which the mechanical 
energy forms a part) is to be conserved. 

4 Conclusions 
Simple, nonholonomic systems undergoing imposition or re- 

moval of constraints are the subject of the present work. Expres- 
sions for changes in the mechanical energy, the linear momen- 
tum and the angular momentum of such systems during the 
transition phases are formulated in terms of the associated 
changes in the generalized speeds. These expressions not only 
play a role in the understanding of the process of imposition 
and removal of constraints, but also enable to test the implemen- 
tation of the theory. However, they apply only to NCF systems 
and to CF systems interacting with particles which belong to 
Re, as does the theory of imposition and removal of constraints. 
This observation simplifies the analytical treatment of such sys- 
tems considerably, and imply that a good analitical practice 
would be to define the system accordingly. 
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Resonant Layers in Nonlinear 
Dynamics 
A new method based on an incremental energy approach and the standard mapping 
technique is proposed for the study of resonant layers in nonlinear dynamics. To 
demonstrate the procedure, the method is applied to four types of Duffing oscillators. 
The appearance, disappearance and accumulated disappearance strengths of the 
resonant layers' for each type of  oscillator are derived. A quantitative check of the 
appearance strength is performed by computing its value using three independent 
methods: Chirikov overlap criterion, renormalization group technique, and numerical 
simulations. It is also observed that for the case of the twin-well Duffing oscillator, 
its perturbed left and right wells are asymmetric. 

Introduction 

In Luo and Han (1998), the stochastic layers near the homo- 
clinic and the heteroclinic orbits were discussed. In this paper, 
we look at another type of stochastic layer, one that is located 
in the vicinity of the resonant orbit. To avoid confusion with 
the stochastic layer located in the vicinity of the separatrix, the 
region of stochasticity near the resonant orbit is usually termed 
the resonant layer. The condition of resonance with the unper- 
turbed oscillation at frequency co (Abraham and Marsden, 1978) 
is 

m~v = nf~ (1) 

in which f~ denotes the excitation frequency, and m, n are 
positive integers. Thus, the resonant orbit leads to a separation 
between the actions of neighboring resonances. In the case of 
two-dimensional Poincare maps, resonant layers are isolated 
from each other by means of invariant curves or periodic orbits, 
and motion from one layer to another is generally forbidden 
except when the external excitation is very strong. When this 
happens, the last invariant curve separating the layers sur- 
rounding the adjacent elliptic orbits is destroyed and the layers 
merge together. We can now talk of global resonant layers, in 
analogy to global stochastic layers as described in Luo and Han 
(1998) and Luo (1995). 

Using the Melnikov method (Melnikov 1963), Holmes 
(1980) developed an analytical technique to determine the oc- 
currence of the transverse intersections of the stable and unsta- 
ble eigencurves. Holmes and Marsden (1981, 1982a, b, 1983) 
applied the method to multi-degrees-of-freedom autonomous 
Hamiltonian systems to determine chaotic motion and Arnold 
diffusion. Other notable applications of the Melnikov method 
in this area of research include Greenspan and Holmes ( 1982, 
1983) and Wiggins (1988, 1990). The Melnikov method is 
able to predict the existence of transverse intersections in the 
stochastic and resonant layers (Guckenheimer and Holmes, 
1983) but it is unable to determine their strengths (or widths 
and chaotic conditions). Reichl and Zheng (1984a, b) and 
Reichl (1992) derived the strength of a stochastic layer for the 
twin-well Duffing oscillator using the Chirikov overlap criterion 
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(Chirikov, 1979). In a subsequent publication, Lin and Reichl 
(1986) computed the strength of the stochastic layer for a parti- 
cle in an infinite square well potential using the renormalization 
group technique (Escande and Doveil, 1981; Escande, 1985). 
Adopting an incremental energy approach, Luo and Han( 1998 ) 
presented the strength of the stochastic layer for the twin-well 
Duffing oscillator. In a similar fashion, one can also talk of the 
strength of resonant layers. The strength of the resonant layer 
for four types of the Duffing oscillator is determined in Han 
and Luo (1997) by applying the Chirikov overlap criterion, and 
in Luo, Han, and Xiang (1995) using the renormalization group 
method. In this paper, a better understanding of resonant layers 
via the development of an analytical model is presented. The 
underlying theory is based on an incremental energy approach 
first developed for our previous work on stochastic layers as 
presented in Luo and Han (1998) and the standard mapping 
methods in Greene ( 1968, 1979). For completeness, four types 
of the Duffing oscillator are investigated in this work. Strength 
computations with respect to the appearance, disappearance, 
and accumulated disappearance of the resonance layer are pre- 
sented. To verify our results, comparisons with those obtained 
using the Chirikov overlap criterion, the renormalization group 
technique, and through numerical experimentations are made. 

Stochasticity Near a Resonant  Orbit  
We consider a time-periodic system defined by 

5 c = f ( x ) + g ( x , t ) ;  x =  ( ; )  @R 2, (2) 

where f ( x )  is a Hamiltonian vector field defined on R 2, g(x,  
t) is a T = 27r/f l-periodic (fixed period) Hamiltonian in time 
t, and f~ denotes the excitation frequency. Specifically, they are 
of the form 

f ( x ) =  [ [ f j (x) ' ]  and g(x,  t ) =  ( g l ( x ,  t ) ] ,~  (3) 
f2(x) ] ' \ gz(x, t) \ / 

and are assumed to be sufficiently smooth (C", r -> 2) and 
bounded on bounded sets D C R 2 in the phase space. The total 
energy of the system is 

H(x, y, t) = Ho(x, y) + Hi (x, y, t),  (4) 

where Ho(x, y) and H~ (x, y, t) are the energy functions of the 
conservative system and external excitation (unperturbed and 
perturbed Hamiltonians), respectively. For a given energy level, 
i.e., Ho = Eo = constant, the nonlinear natural frequency and 
the unperturbed solution can be obtained as described in Han 
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Fig, 1 Neighborhood of the (2n - 1) th resonant frequency 

and Luo (1997). Applying Fourier series expansion to the per- 
turbed Hamiltonian Hi, the resonant condition of Eq. (1) is 
given by 

f~(m/.) = m f~, ( 5 )  
n 

in which ~(m/,,) denotes the (m :n) resonant frequency. A neigh- 
borhood of a natural frequency w close to ~(,,/,~ can be defined 
as 

27f 
I w  - f~(~/, ,~l ~ E and T(Eo) - 

~(mln) ' 

wi+, = wi + F(Uo ,  & i ) [  

J 
m 

~ + l  = 6, + Vo(wi<)  

271" 
T ( E I )  = - - ,  (6) 

where e ~ 1 and T ( E )  is the nonlinear period. Choosing the 
odd-order subharmonic resonance as an example, Eq. (6) is 
illustrated as shown in Fig. 1. To estimate the energy increment 
of the perturbed orbit, we consider the sketch in Fig. 2. All 
thin line curves (including the dash line curve) pertain to the 
unperturbed orbits of Eq. (2).  The dash line curve denotes an 
unperturbed resonant orbit which is an unperturbed orbit that 
satisfy the resonant condition w = ( m / n ) ~ .  To compute the 
energy increment of the perturbed orbit shown by the bold 
line curve, it is assumed that the perturbed orbit lies in the 
neighborhood of the unperturbed resonant orbit with its fre- 
quency and period governed by Eq. (6).  Thus, the energies of 
the two orbits are related by [E - E0[ -< el where e~ > 0 is 
a small parameter. Under this situation, the energy increment 
of the perturbed orbit can be approximated by the energy incre- 
ment of the unperturbed resonant orbit. That is, over one period, 
we have 

f T(EI)+tO d H ( x ,  y ,  t) 
AHo = El - Eo = dt 

, o  dt 

f fT(Eii)+tO r(u0)+'0 d H ( x ,  y ,  t)  dt {Ho, H~ }poi~ondt 
to dt v , o  

f r{e°)+'° ( f ig2 f2g , )d t ,  (7) 
t o 

where to is the initial time. If f l ,  f : ,  g~, g2 are given, Eq. (7) 
can be integrated into the following form: 

&Ho ,~ F(Uo ,  4,o), (8) 

in which Uo is a system parameter function excluding the initial 
phase angle 4,0 = f~to and F(  Uo, 4'0) is a bounded and periodic 
function, For the perturbed orbit in the neighborhood of a given 
unperturbed resonant orbit, its phase angle change over one 
period of the unperturbed orbit is 

27rfl 
&4, = 4,~+, - 4,i ~ QT(E1)  - -- Vo(E, ) ,  (9) 

co 

where V0 is a function associated with the energy El. Introduc- 
ing the following notation, E~ = Wi+l at the (i + 1)th period 
and the corresponding phase angle is 4,i+,, Eqs. ( 8 ) -  (9) can 
now be rewritten as 

(10) 

(11) 

Observe that Eq. (10) is now expressed in a form that permits 
the resonant layer to be investigated iteratively. It is a map of 
the energy change and phase angle change of a trajectory for 
each period of its motion. It resembles a perturbed twist map 
and when applied to the Duffing oscillator, it becomes the 
whisker map. In the neighborhood of the resonant layer, Vo in 
Eq. (10) can be linearized about a fixed point and we obtain a 
map similar to the standard map. Considering the period-1 mo- 
tion, its fixed point can be easily determined: wi+t = wi = w0 
and 4,i+1 = (hi + 2mrc/n = 4,0 + 2mr~/n. This implies 

Vo(wo) = 27r 

(12) 

Defining a new dimensionless energy 

1¢, = OVo(ws) (wi - Wo), 
OWj wj=Wo 

E o + s  

1 I ( 2 n + l )  

~(2~.1) ~ 1 )  

(2n-3) 

O E~ 2n'l) E 

Fig. 2 A perturbed orbit in the neighborhood of the unperturbed reso- 
nant orbit 

and linearizing Vo in Eq. (10) about the fixed point yields 

/~i+1 = Ei + F i ( K ,  4,i)1 
(13) 

4,i+1 = 4,~ + /~i+l.f ' 

where K = UoOVo/Owo and F1 (K, bo) is a bounded and periodic 
function. Observe that Eq. (13) resembles the standard map 
and as shown in the next section, when applied to the Duffing 
oscillator, becomes the standard map. From Eq. ( 13 ) the mecha- 
nism involved in the transition to global stochasticity (see Lich- 
tenberg and Lieberman, 1992) in a conservative system is very 
clear. The coefficient K is the only control parameter for the 
characterization of the KAM tori. For instance, for the standard 
map, a critical value of K is attained when K = K* = 0.9716354 
. . . .  since at this value, the last remaining KAM toms is broken. 
When this happens we have 
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Y 
1 

Unperturbed resonant orbits 

Fig, 3 

[ Unperturbed resonant orbits 

(a) (b) 

Resonant layer: In) appearance and (bl disappearance 

OVo = K*. (14) uos;  
Increasing the excitation results in the merging of the primary 

resonant layers until they come into contact the closest unper- 
turbed resonant orbit. When this happens, the resonant layers 
will be destroyed, and a new stochastic motion near that orbit 
will appear. This is qualitatively sketched in Fig. 3 where Figs. 
3 (a)  and 3 (b) show, respectively, appearance and disappear- 
ance of the resonant layer near the closest inner unperturbed 
resonant orbit. Depending on the physical system modeled, it 
is also possible for the resonant layer to come into contact with 
the closest outer unperturbed resonant orbit as depicted. 

We postulate that when the resonant layer is destroyed, the 
energy increment in Eq. (7) is given by the energy difference 
between the two closest unperturbed resonant orbits, one of 
which is associated with the destroyed resonant layer. That is 

rain (IE~ "-~ - E~"-' I, lEg "+' - Eg" '1) 

= I ~ H < 0 2 " - ' > l  ~ IF(U0, ~o)1. (15)  

Equation (15) constitutes the critical condition for the disap- 
pearance of the resonant layer. From this equation, the disap- 
pearance strength of the resonant layer can be computed. To 
compute the.appearance strength, we have to resort back to Eq. 
(12).  For greater accuracy, we should consider the effects of the 
secondary resonances in the neighborhood of the intermediate 
resonant layer. 

R e s o n a n t  Layers  for the U n d a m p e d  Duff ing Osc i l la tor  

The resonant layers for the four undamped Duffing oscillators 
are discussed in this section. By suitably varying a~ and ot2, 
four types of the Duffing oscillator as listed in Table 1 can be 
simulated where parameters c~ and ce2 are the linear stiffness 
and nonlinear stiffness coefficients respectively; and Q0 and f~ 
are the external excitation amplitude and frequency. 

Table 1 Four types of Duffing oscillators 

TypeI c~, >0 and ct, >0 2+c%x+ct,.x~=Qocosf~t 

Type II c~ I > 0 and ct: <0 ,~+c~,x-[c~,l x3 = Qo cos~t 

Type III ct I =0 and c% >0 2 +c~2x 3 = Qo cosf)t 

Type IV c~ I <0 andc% >0 2-]ohlx+~2x 3 = Qo cosf2t 
(a) E 0 > 0 
(b) E 0 < 0 

Type I Duffing Oscillator. Resonant layers for the Type I 
Duffing oscillator are qualitatively sketched in Fig. 4. The outer 
dark patch associated with the first resonant orbit and the inner 
dark patch associated with the third resonant orbit are termed 
respectively the resonant layers of the first and third orders. 
Note there exist other resonant layers in the neighborhood of 
the origin O, but these are not shown. 

From Table 1, the Hamiltonian for Type I is given by 

i i H = ½ y2 + ~ cetx 2 + ~ a2x 4 _ xQo cos [~t. (16) 

where y = 2. This Hamiltonian can be separated into the non- 
time-dependent part Ho and the time-dependent part Hi. That 
is 

where 

H = H o +  H~, 

1 1 Ho = ½ y2 + "~ OLiX2 "t" ~ OL2 x4 , 

17) 

18) 

and 

Hi = -xQo cos 12t. 19) 

Solving Eq. (18) for Ho = Eo, the results are (Han and Luo 
1997) 

[ 2K(k) O k] , (20) x = e c n  

Y 

i 

b 
Fig, 4 Resonant layers near the first and third resonant orbits for Type 
I Duffing oscillator 
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in which cn, sn and dn are the Jacobi-elliptic functions, K(k )  
the complete elliptic integral of the first kind, and k the modulus 
of the Jacobi-elliptic function. The other parameters e and 0 in 
these expressions are defined by 

e 2 -- 2k2°Ll 0 = COt, (22) 
(1 - 2k2)ol2 ' 

where w is the nonlinear natural frequency of the undamped 
Type I Duffing oscillator. It can be computed from 

1 o ~ 2  eTr (23) 
co = 2 kK(k )  " 

l !  

The particular energy level E0 can then be calculated using 

k2(1 - k2)a~ 
E0 - (24) 

(1 - 2k2)2o~2 ' 

and the action variable J for an orbit is given by 

J -  2x~ze3 [(1 - kZ)K(k )  + (2k 2 - 1 )E(k) ] ,  (25) 
31rk 3 

where E ( k )  denotes the complete elliptic integral of the second 
kind. Substituting Eqs. (20) - (21) into Eq. (16) and expanding 
the time-dependent term, the complete Hamiltonian now be- 
comes 

H = Ho(J) - Qo ~ Q2,,_i { cos [(2n - 1)co - f~]t 
n = l  

+ cos [(2n - 1)w + f~]t} (26) 

in which 

7 r e  

2kKcosh  7r n -  K ( k )  J 

where K ' ( k )  = K ( k ' )  and k '  = 1 - k 2. Except for the term 
of the (2n - 1 )th primary resonance, all other terms in H will 
average to zero over the period 27r/fL The resonant condition 
is 

f~ 
fail = ~ 2 n - ,  - -  - -  (28) 

2n - 1 

The period of the resonant orbit is computed using f~2,-1. 
However, for all other orbits in the resonant layer, the period 
at energy Et is calculated based on co, that is 

27r 
T(E~) = - - .  (29) 

c o  

The change of phase angle over one period T(E~ ) is 

in which 

Aqb = FtT( E, ) = 17o (30) 

Vo = 4 f ~ K ( k ) ~ 2  -ek. (31) 

Thus, from Eq. (7) ,  the energy increment over one period 
T(E~) can be approximated by 

f 
T ( E o ) + t  

AHo ~ yQo cos ( ~ t ) d t  = Uo sin (~t0) ,  (32) 
v t o 

where 

2~aQo (n K'(ka,,_,)]. (33) uo 

Note that K ' ( k )  = K ( k ' ) .  Observe that Eq. (33) describes 
the function U0 identified in the previous section and as shown, 
comprises only of system parameters. Following the procedure 
outlined in previous section, Eqs. (30) and (32) are written as 

wi+~ = wi + Uo sin (~bi) / 
(34) 

4~+, = 4', + Vo(w,+~)J 

Observe that Eq. (34) is the whisker map. To obtain the 
standard map, we linearize Vo in Eq. (34) in the neighborhood 
of the unperturbed resonant orbit about the period-1 fixed point 
Wi+l = wi = Wo and ~bi+l - ~bi = 2(2n - 1)Tr. The resonant 
energy is given by 

2 ( 2 n -  1)Tr = Vo(wo). (35) 

From Eq. (12) a new dimensionless energy/~ = G~Awi can 
be defined, where the function G~ = OVo/Owi+~ at wi+t = wi = 
w0, is given by 

G~ 2f~o~2 ( 1 - 2(k2n-,)2/5/2 

(k2,,-1) 2 a l  / 

X [K(k2n-1) 1-~2(k2n-l-~2E(k2"-l)] " 1  - (kz._,) 2 (36) 

Linearizing Eq. (34) about the fixed point we get 

Ei+l  = ~) -+ K sin ~bi] 

4',+, = 6 ,  + ~ , + , j  r , 
(37) 

where K = U0lGal. Note that Eq. (37) is now the standard 
map. Employing the universal constant of the standard map, 
i.e., K = K* = 0.9716354 . . . .  we can compute the appearance 
strength of the resonant layer and the result is 

0 " 9 7 1 6 3 5 & J ~ c o s h [ ( n - ~ ) T r  K'(k2n- ' )  ] (38) 
Qo ~ 2,/27r~21G11 K(k2,,_,) J "  

As a check of Eq. (38),  any one of the three methods can be 
used: Chirikov overlap criterion, renormalization group tech- 
nique and numerical simulation; to independently compute the 
appearance strength. The results based on the Chirikov overlap 
criterion and the renormalization group technique are available, 
respectively, in Hart and Luo (1997) and Luo, Han, and Xiang 
(1995). We will simply quote them here. Based on Chirikov 
overlap criterion, the appearance strength is 

= . (39) 
Qo 4(2n  - 1)2(2n + 1)2G0 + 

Using the renormalization group technique, the appearance 
strength is 

0"49~2 ( ~ 1 ~ )  2 (40) 
Qo = 4(2n  - 1)2(2n + 1)2G0 + 

where 

Q 2n - 1 (41) 

Q2,,+, ; E (  
' f~2(2n + 1) cosh 7r n + K(k2,,+l) 
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Fig. 5 Resonant layers near the first and third resonant orbits for Type 
II Duff ing oscillator 

i y 

Fig. 6 Resonant layers near the first and third resonant orbits for Type 
Ill Duff ing oscillator 

Observe that Eqs. (39) and (40) differ only by a factor of 
0.49. A comparison of our results based on the incremental 
energy approach with the predictions of the Chirikov overlap 
criterion, renormalization group technique, and numerical simu- 
lations is listed in the next section. 

To compute the disappearance strength we assume that our 
energy postulate which is described mathematically by Eq. (15) 
still holds. This yields the critical condition for the disappear- 
ance of the resonant layer from which the disappearance 
strength of the resonant layer can be estimated. The result is 

= min {lEg ''~' - - E g "  '1 and leg" ' -  Eg" 31}. (43) 

If the incremental energy along a resonant obit is set equal 
to I E2" ~ - E~I, where E~ = 0 is the energy at the origin, 
Eq. (43) describes the accumulated disappearance strength of 
all the possible resonances higher than order (2n - I ) of the 
system. Therefore, we get the maximum critical condition for 
the accumulated disappearance strength: 

(44) 

A more accurate model is to sum the effects of each individ- 
ual resonant layer instead of simply setting the incremental 
energy to lEg" i _ E~;[. 

Type II  Dur ing  Oscillator. Resonant layers for the Type 
II Duffing oscillator are qualitatively sketched in Fig. 5. The 
structure of the resonant layer differs from that of the Type I 
oscillator because as shown in Fig. 5, we now have a hetero- 
clinic orbit. For this situation, the resonant layer exist only 
inside the heteroclinic orbit, otherwise, this layer will lose its 
stability when it comes into contact with the heteroclinic orbit. 
The maxinmm critical condition for instability of the resonant 
layer is 

= [E~ ~ - Eg" l l, (45) 

in which E;  ~ is the energy of the separatrix, i.e., E~" = 
a~/(4 Io~21). For brevity, all the results pertaining to the appear- 
ance and disappearance strengths are listed in the Appendix. 

Type II I  Dur ing  Oscillator. Resonant layers for the Type 
III Duffing oscillator are qualitatively sketched in Fig. 6. This 
oscillator is a special situation of Type 1 and therefore, all its 
results, with the exception of the maximum critical condition 
for the accumulated disappearance strength, are summarized in 
the Appendix. The maximum critical condition is 

2Q07r~/~2 sech [ ( n -  ~)7r ] = Eg"-t. (46) 

Type IV Dur ing  Oscillator. For the Type IV Duffing os- 
cillator, there are two kinds of resonant layers as qualitatively 
sketched in Fig. 7, representing E0 < 0 and Eo > 0. Note 
that Type IV(c)  which is described by Eo = 0 possesses only 
stochastic layers as discussed in Luo and Han (1998). Once 
again, for these two situations, all their results listed in the 
Appendix, with exception of  the maximum critical condition 
for the accumulated disappearance strength. The result for Type 
IV(a)  is obtained by noting that E~ = 0. That is 

A y 
I 

(a) Type IV 

y [Y 

(b) Type IV(a) (c) Type IV(b) 

Fig. 7 Resonant layers for Type IV, Type IV(a) and Type IV(b) Duffing 
oscillators 
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Table 2 Comparison of the appearance strength computations 

Oscillator Order of Input Computed Appearance Strength 

Type Resonance Energy Excitation Q0 
Frequency 

E o ~ IE CC ~ RG b NS 

1st 52.75000 3.28244 3.04401 3.22748 1.58146 3.04995 

Type I 3rd 18.25000 7,64562 4.25025 13.09158 6.41488 3.6055'5 

5th 15.95000 12.34715 33.14722 142.48083 69.21561 33.20000 

1st 0.10013 0.91064 0.08633 . . . . . .  0.02873 

Type 1I 3rd 0,15638 2.51709 0.28158 0.25983 0.12732 0.25875 

5th 0.[9800 3.80845 1 . 0 2 4 9 7  1,32309 0.64831 1.02500 

1st 48.75000 3.11743 2,53486 1.99073 0.97513 2.54550 

Type IV(a) 3rd 5.17500 5.19563 0.77066 1.66639 0,81653 0.75750 

5th 6.02500 9.01816 5.60285 17.47684 8.56365 5.90000 

1st -0.18413 1.33650 0.04687 0.06420 0.03145 0.03547 

Type IV(b) 2nd -0.15038 2.5772[ 0.08425 0.16379 0.08026 0.10500 

3rd -0.12413 3.73699 0.21239 0.49209 0.24109 0.19985 

"Han and Luo (1997); bLuo, Han and Xiang (1995). 

and for the Type IV(b) we have 

Q07r~ sech nTr K(k,,) J (48) 

Comparison of Appearance Strength of Resonant 
Layers 

Having obtained the appearance strength of resonant layers 
based on our proposed incremental energy approach (IE),  we 
will now present verification of our results by comparing with 
three independent methods: Chirikov overlap criterion (CC),  
renormalization group technique (RG),  and numerical simula- 
tions (NS). For simplicity, we set lall  = la2l = 1.0 for all 
the four types of During oscillator. The appearance strength is 
computed as follows. From the specified initial energy E0, and 
choosing say, the Type I During oscillator, we can compute k 
and e via Eqs. (24) and (22), respectively. Then, we can deter- 
mine the natural fi'equency ~v and the initial condition (x, y) 
using Eqs. (23) and ( 2 0 ) - ( 2 1 ) ,  respectively. The excitation 
frequency f~ can then be evaluated from the resonant condition 
in Eq. (28) corresponding to a selected order of resonance n. 
The various strength computations are carried out using Eqs. 
(38), (43), and (44). We can also perform the same process 
but in a different order of execution if either the ~ or (x, y) is 
given. In our example, we assumed that Eo is known, and the 
excitation frequency f~ (and the initial condition (x, y)) are to 
be computed. The results are tabulated in Table 2. The appear- 
ance strengths of the Type I During oscillator are calculated 
using Eq. (38) for IE, Eq. (39) for CC, and Eq. (40) for RG. 
To compute the appearance strength of Type II-IV During 
oscillators, their corresponding equations listed in the Appendix 
can be used. 

Two integration techniques are used for the numerical experi- 
mentations: a second-order symplectic scheme (Feng and Qin 
1991, and McLachlan and Atela 1992) with time-step At = 
10 -5 ~ 10-7T (where T is the excitation period) and precision 

10 6; and an adaptive fourth-order Runge-Kutta method with 
tolerance set between 10 s _ 10-9. The numerical simulations 
are performed over 10ST and we find that both methods yield 
almost identical solutions, thereby confirming the reliability of 
the two schemes. To determine the appearance strength during 
NS, we check for the appearance of the resonance. For example, 
if input parameters pertaining to the third-order resonance are 
employed for the numerical runs, the appearance strength corre- 
sponding to the visually observed third-order resonance is com- 
puted. However, this is easier said than done because the precise 
determination of the appearance of a resonance layer during 
NS is based Wholly on visual observations and thus, a highly 
subjective process. The NS results tabulated in Table 2 for all 
the four types of During oscillator correspond to the most 
visually distinctive appearance of the resonance layers and are 
generated via the Runge-Kutta integrator. Observe that the 
agreement among IE, CC, and RG are generally better at 
lower-order resonances and this is attributed to the fact CC and 
RG are based on a two-term approximation which becomes 
increasingly less accurate as the order of resonance increases. 
On the other hand, the agreement between IE and NS is quite 
good. 

We should also point out that since there are no currently 
known procedures for independently computing the disappear- 
ance strength and the accumulated disappearance strength, other 
than our proposed incremental energy method, no comparisons 
of these results are given. 

Numerical Simulations of Resonant Layers 
In this section, we present the results of numerical simula- 

tion of the resonant layers via their Poincare mapping sec- 
tions. Only results for Type I, II, and IV(b)  Dur ing  oscilla- 
tors are given. The results for Type III and IV(a)  oscillators 
are very similar to that of Type I oscillator and hence, not 
shown here. The computed input parameters for the numeri- 
cal experimentations are summarized in Table 3. The use 
of these computed parameters ensures that resonant layers 
are obtained during the numerical runs. Once again, l a,] = 
l a2[ = 1.0 is employed. 

Figure 8 depicts the resonance layers produced by Type I, 
II, and IV(b) During oscillators. Figure 8(a) shows the third 
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Table  3 C o m p u t e d  input data for  numerical  s imulat ions of  resonant  layers 

Figure  O s c i l l a t o r  Ord er  o f  A n a l y t i c a l l y  C o m p u t e d  P a r a m e t e r s  N u m e r i c a l l y  
S i m u l a t e d  

N o .  T y p e  R e s o n a n c e  
(.+,y) ~ Qo 

Figure 8(a) Type [ 3rd (-2.75723145, 0.00000000) 7.64562 t0.415 

5th (0.71630084, 5.59064277) 12.34715 105.000 

Figure 8(b) Type I1 tst (0.47510649, 0.00000000) 0.91064 0.027 

5th (0.32752924, 0.45959614) 2.51709 0.310 

Figure 8(c) Type IV(b) 2nd (R) (1.27721125, 0.00000000) 2.57721 0.110 

2nd(L) (-0.60723259, 0.00000000) 2,57721 0. t l0 

3rd (R) (t.30750807, 0.00000000) 3,73699 0.376 

3 r d ( L )  (-0,53890877, 0.00000000) 3.73699 0.376 

and fifth-order resonant layers for the Type I oscillator, Fig. 
8(b) depicts the first and third-order resonant layers for the 
Type II oscillator, and Fig. 8(c)  displays the second and third- 
order resonant layers for the Type IV(b)  oscillator. Observe 

the presence of higher order islands in Type II and IV(b)  oscil- 
lators. Another interesting observation is the nonsymmetry of 
the perturbed left and right potential wells in the Type IV(b)  
oscillator. 
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Fig. 8 Resonant  layers for  u n d a m p e d  Type I, II, and IV(b)  Ouff ing osci l lators via NS 
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Conclusions 
A study of the resonant layers for all four types of Duffing 

oscillators is presented here. The approach is based on an incre- 
mental energy technique implemented into the standard map- 
ping approach and can be quite easily extended to other nonlin- 
ear dynamical systems. Using this approach, the appearance, 
disappearance, and accumulated disappearance strengths of the 
resonant layers are derived. For the case of the appearance 
strength computations, they are quantitatively checked against 
the values obtained via three independent methods: Chirikov 
overlap criterion, renormalization group theory, and numerical 
simulations. The agreement between 1E and NS is quite good. 
It is also found that the perturbed left and right potential wells 
are asymmetric for the case of the Type IV(b) twin-well 
Duffing oscillator. 
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A P P E N D I X  

Computation of the Strength of Resonant Layers for 
the U n d a m p e d  Type  I I - IV  Duff ing Osc i l la tors  

The equations governing the undamped Type II-IV(b) 
Duffing oscillators are summarized here. Their derivations are 
similar to that for the Type I oscillator. 

Type II Oscil la tor .  The results are 

k2oe 2 2k2cel 
- -  , e 2 - 

E0 (1 + k2)21o~21 1 + k=)lo~21 ' 

(Io~2lerr ( a l )  
co - 2~kK(k) 

The resonant condition is 

~ = (2n - l)co. (A2)  

The appearance strength of the resonant layer based on Chiri- 
kov overlap criterion (CC)  is 

= ; (A3)  
Qo 4(2n - 1)2(2n + 1)2Go + 

the appearance strength of the resonant layer based on the renor- 
realization group method (RG) is 

049,   ( 1 ) 2  
= ; (A4)  

Qo 4(2n - 1)2(2n + l)2G0 + 

and, the appearance strength of the resonant layer based on the 
i nc rementa l  energy ( IE )  is 

0 . 9 7 1 6 3 5 4 V q - ~ s i n h [  ( 1 )  K'(k2,, 1)] (A5)  

The disappearance strength of the resonant layer based on 
the incremental energy is 

= ~-/~--~ sinh n - ~ ~- -K-(k2~,.q ; J ; 

in which 

02.-, -~/1~21 (2n - 1) 

(A6)  

(A7)  

Qz,,+, - ~/1~21 (2n + 1) f (k2 , , . i )  J '  
(A8)  

Go = 7r2 IK(k2n I) 
4e2(k~,, ~)ZK(k2,, j)3 

__ .ll q- (k2n(k2n I) 2')2 E(k2,,  ' ) 1 '  (A9)  
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- - -  g ( k 2 , , - I )  

k2,,_ 1 (k,r,_ 1 ) 2 OLI / 

1 + (k2,, 1) 2 E(k2n_l) ] 
1 - (k2,,_l) 2 J o (AIO) 

T y p e  I I I  Oscillator. The results are 

k 1 (4Eo11/4 = ~ , e  = - -  , K ( k ) , ~  1.8541, co = 
\ ~ 2 /  

(4ce2Eo) u47r 

3.7082 

( A l l  

The resonant condition is 

f~ = (2n - l)co. (A12) 

The appearance strength of the resonant layer based on Chiri- 
kov overlap criterion (CC)  is 

- ; ( A 1 9 )  
Q0 4 ( 2 n -  1)2(2n + 1)2Go + 

the appearance strength of the resonant layer based on the renor- 
malization group method ( R G )  is 

0.49~ 2 ( 1 )2 
Q o = 4 ( 2 n _ l ) 2 ( 2 n + l ) 2 G  ° ~ + ~  ; ( a 2 0 )  

and, the appearance strength of the resonant layer based on the 
incremental energy ( IE)  is 

097   ,4 o hI(1) 
Qo ~ 2~~IG, I n - ~  rr K(k2,, ,) J" 

The disappearance strength of the resonant layer based on 
the incremental energy is 

= 2,/2fire cosh n - ~  rc K(k2,, 1) J ; 

in which 

(A22) 

6.3738151~3{~/(2n - 1) sech [rr(n - 1/2)] + ~/(2n + 1) sech [rc(n + 1/2)] }-2 
Qo = 

(2n - 1)3(2n + 1 ) ~ 3 ~ 2  

the appearance strength of the resonant layer based on the re- 
normalization group method ( R G )  is 

3.1231694f~3{((2n - 1) sech [Tr(n - 1/2)] + ( (2n  +1 ) sech [rr(n + 1/2)] }-2 
Qo = _ . . . . . . . .  c---- ; 

(2n - 1)3(2n + 1)71-3~2 

(A13) 

(A14) 

and, the appearance strength of the resonant layer based on the 
incremental energy ( IE)  is 

0,2404692 o2 e  [( 
Qo ~ 16,j~f~zTr cosh n - vr . (AI5 )  

The disappearance strength of the resonant layer based on 
the incremental energy is 

= 2,j2fbr cosh n - ~- . 

(A16) 

Type IV (a)  Oscillator. The results are 

Eo - (1 - k2)k2a~ e2 2k21~,1 
(2k 2 - 1)2~2 ' (2k 2 - 1 )~2 '  

~ 2 e T r  
co = 2V~kK(k) " (A17) 

The resonant condition is 

f~ = (2n - 1)co. (A18) 

The appearance strength of the resonant layer based on Chiri- 
kov overlap criterion (CC)  is 

rr 2 [ 1 - 2(k2,,_1) 2 
Go 4e2K(k2,,_t) 3 [K(k2,,-i) 1 - (k2,,_l) 2 

G i  m 

E(k2n-l) ] , 

(A23) 
2~2oe2 (2(k2,,_l)2 -1)s12[K(k2n_~) 

(k2,, i) 2 \ og[ 

1 - 2(k2,, t) 2 ] 
1 -  (k2,, 1) 2 E(k2,,_l)j , (A24) 

Q 2 , , - i - ] ~ ( 2 n  - 1) 
sech [ r c ( n -  ~ )K ' (k2 , , -1 )  

K(k2,,-i) ] ' 
(A25) 

O2,,+l -- ~/~-~(2n + 1) K(k2,,+l) J 
(A26) 

T y p e  I V ( b )  Oscillator. The results are 

Eo (k 2 -  1)oe~ e2 - 21c~,l 
(2 - k2)20~2 ' (2 - k2)0~2 ' 

~ 2 e T r  
co - ~ X ( ~ )  ' (A27) 

The resonant condition is 
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~2 = nw. (A28) 

The appearance strength of the resonant layer based on Chiri- 
kov overlap criterion (CC) is 

; (A29) Qo = 4n2( n + 1)2Go + 

the appearance strength of the resonant layer based on the renor- 
malization group method (RG) is 

0"499/2 (V~, 1 Q~,,+i) 2 
- ; (A30) 

Qo 4n2(n + 1)2G0 + 

and, the appearance strength of the resonant layer based on the 
incremental energy (IE) is 

0 .9716354~ ' I K' (k . ) ]  Qo ~ -~ - - - - - - -  cosn nTr . (A31) 
~/27r~lG, I K(k.) j 

The disappearance strength of the resonant layer based on 
the incremental energy is 

in which 

Q n +  1 - -  - -  

G o  - 

G i  - 

leg+' - E]I~/~ cosh r K'(k.)]  . Qo = ~ ~ I G ,  I kn~ K(k~) _.1 ' 
(A32) 

,/2a [ K'(k . ) ]  (A33) Q . = ~ s e c h  7rn K(k.) ] '  

~f2f~ sech 7r(n + 1) , (A34) 
~ 2 ( n  + 1) K(k,+=) ] 

7r2 [ 2-(k")2E(k,,)] , (A35) 
e2k,aK(k.)3 2K(k.) 1 - (k,,) 2 

lea2 (2 - (k . )2 /5 /2  
( k n )  4 a l  / [ 2K(k,,) 

21 -- (k.) 2 (k")2 E(k")l " (A36) 
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Discrete Modeling of a String 
and Analysis of a Loop Soliton 
A discrete model for an extensible string is proposed and analyzed by a discrete 
sol#on theory and computer simulations. The relation between tension of the string 
and the size of a loop propagating on the string is obtained analytically by using the 
soliton theory. We use this relation to investigate dynamics and stability of loops, 
and it is found that one loop is stable against various kinds' of perturbation. It is 
confirmed numerically that the loop can be formed by moving a boundary along a 
semicircle. If the moment of the string is introduced, behaviors' of  the formation are 
drastically changed and there is a critical value of stiffness of the string beyond 
which the loop cannot be formed. As for collision of  two loops, we ,found that two 
loops do not break after collision if the two are similar. This result of collision can 
be well explained by our former analysis of a continuous string theory (Nishinari, 
1997). 

1 Introduction 
Research on the dynamics of large deformation of one-dimen- 

sional elastic media, such as rods, strings, and polymers are im- 
portant both for engineering and physics. In analyzing the behavior 
of these media, it is one way to treat such a continuous string as 
a discrete system, such as a combination of beads and springs. 
The merit of using discrete models is obvious: We can treat various 
one-dimensional objects generally, and it is suitable for computer 
simulations including various boundary conditions. 

In this paper, we propose a discrete model of an extensible 
string, which coincides with a usual continuous string in the contin- 
uous limit. By using the model we analyze the nonlinear dynamics 
of the string, including the effect of boundary conditions. 

Recently Goldstein and Petrich (1991) have discovered the 
connection between dynamics of curves and soliton theory. 
They have shown that the dynamics of a curve in a plane is 
governed geometrically by the modified KdV (mKdV) equation 
in a particular case. We use the discrete version of their theory 
(Doliwa and Santini, 1994) and apply it to the dynamics of the 
discrete string by the way we have proposed in our previous 
paper (Nishinari, 1997). 

This paper is organized as follows. Basic equations and con- 
stitutive equations for a discrete string are given in Section 2. 
We summarize the analysis of discrete curves by the soliton 
approach in Section 3. Comparison of the discrete soliton theory 
with the discrete string theory is given in Section 4. Results of 
numerical simulations are given in Section 5 and concluding 
discussions are given in Section 6. 

2 Basic Equations for a Discrete String 
Let us consider a motion of an extensible discrete string in 

a plane. The basic equation for a balance of forces is given by 

d2r" = (N,, - N,-1 cos A,,-i + Q,,-i sin A,, 1) t,, 
p dt---- 5- -[ 

an + (N,,-L sin A,,_l -- (Q, - Q,-i  cos A,, 1)) - 7 .  (1) 
1 
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Here p is mass density along the string defined by p = m/1, 
where m is mass of a bead, I is an unstretched length of a spring. 
r ,  is a position vector in a plane, and An-~ is defined as A,,-i 
-~ 0,, - 0,-1, where 0,, is an angle between the x-axis and t,,. The 
unit vectors t .  and n,, are related by the Serret-Frenet formula of 
a discrete version 

n,,+l/ - s i n  A,, cos A,,J n,, " 

N,, and Q, are the axial force and the shear force of a spring, 
respectively (Fig. l a ) ) .  Assuming that springs are linear, the 
constitutive equation for N, is given by 

([r,,+l - r,,I - l) ( G , -  l) 
N, = k - k - ,  (3) 

l l 

where k is a.spring constant. 
Let us consider effects of the bending moment of the string. 

We assume that there occurs a moment at each segments due 
to a kind of torsional spring (Fig. l (a ) ) .  The moment is consid- 
ered to be proportional to the difference of the angle A,,. Then 
we set 

M,, = K - - ,  (4) 
l 

where K is a stiffness constant. Then we can determine Q, by 
considering the balance of moment as 

M,,+i - M,, 
Q,, , (5) 

Gn 

where G,, is defined in (3).  
The position of the string is given by 

n -  1 

r ,  = r0 + ~ Gktk, (6) 
k=0 

where r0 represents the position of the left boundary of the 
string. The proposed Eq. (1) and the constitutive Eq. (3) and 
(4) are simple discrete models for an extensible string with the 
bending moment. This model is the same as the Gaussian chain 
(see Doi and Edwards, 1986), which is a model of polymers, 
except for the bending moment and the shear force. 

Let us consider the correspondence of the proposed model 
and the continuous string. We take 1 ~ 0, and using the formula 
G,/I ~ ~g we obtain, from (3) and (4) ,  
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Fig. 1 (a) 

I U   A::70 -°- 

Fig. 1 (b) 

Fig. 1 {a) Configuration of the segment of a discrete string and (b l  a 
mechanism for the moment generation between segments 

N = k(~g " 1), (7) 

M = X ~ g ,  (8) 

where K = O0/Os and s is the arclength of the string defined 
by (Nishinari, 1997) 

f0 s = ~/g(~' ,  t) dc~'. (9) 

In (9) ,  ~ represents the unstretched length of a string and g is 
a metric given by 

Or Or 
g &r 0~ (10) 

Taking l - '  0, we obtain from ( 1 ) the continuous limit of the 
equation of motion 

pSV= 5~+@,Q t+ -~g+~g~N ,. (11) 

Here p represents a line density of the string. We divide (2) 
by G. and also taking l -~ 0, we obtain the Serret-Frenet formula 

;)(:) (12) 

Equation (5) becomes, in the continuous limit, 

OM 
Q = - - .  (13) 

Os 

Equations (11 ) and (13) and constitutive Eqs. (7) and (8) are 
been shown in our previous paper (Nishinari, 1997). The usual 
equation for the balance of moments is (Nishinari, 1997) 

pl  d20 OM 

~gg dt 2 OS 
Q, (14) 

where I the geometrical moment of inertia of the string. Thus 
our model corresponds to the case I = 0, i.e., we neglect an 
effect of inertia. This assumption is usually used to treat a 
narrow rod or a string (Ichikawa, Konno, and Wadati, 1981). 

3 A n a l y s i s  o f  a D i s c r e t e  S t r i n g  b y  t h e  S o l i t o n  T h e o r y  

In this section, we show a way of the analyzing of a discrete 
curve by the soliton theory (Doliwa and Santini, 1994). Let 
the curve dynamics in the plane be of the form 

dr~ 
- -  = U.t,, + W,,n.. (15)  
dt 

We summarize (15) and (2) into the matrix form as 

n.  - A. n .  
(16) 

E. t~ = 0 cos A~ sin An tn , 
n.  0 - s i n  An COS A n /  n .  

(17) 

where E., is a shift operator defined by E . f ( n )  = f ( n  + 1 ). 
From 

[E,, 0,l = 0, (18) 

we obtain 

A.Gn = -W. ,  + cos AnW,,+i + sin A.Un+j, (19) 

d 
G. = - U n  + cos A,,Un+i - sin A.Wn+i, (20) 

d 
~ A ~  = A , , + i -  An. (21) 
dt 

The crucial point in using the discrete soliton theory is that 
if we put 

U.,= 2qnq,,-~ (22) 

W. q,, - -  qn -2  2 - G. - lq . - l (qn  + qn-2), (23) 
G,,_ 1 

where 

1 tan A-2" =- q.. (24) 
Gn 2 

Then we obtain from (20) 

d 
7 G,, = o. (25) 

We can put 

Gn = /(1 + e) ~ G, (26) 

where e is a constant, which represents an initial tension of the 
string. Then using (26) we obtain from (21) 

2Gq,, 
- -  - A.+i - A . ,  (27)  
1 + G2q~ 

where 

1 2 2 An = ~5 ((1 + G q.)qn+l - (1 - G2q])q._, 

(1 2 2  2 2  - - G qn-l)q,, + (1 + G q n - 1 ) q n - 2 ) ,  

or substituting (28) into (27) we obtain 

(28) 
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= 2 2 2G 3 dq'---2' (1 + G2q~)((1 + G q,,+l)q,,+2 
dt  

- (1 + G2q2,,_l)q,,_z + G2(q2,,+, - q]- t )q , ,  

- 2 ( q , , ~ l  - q , , - l ) ) .  ( 2 9 )  

This is called the second-order dmKdV equation, which is com- 
pletely integrable by the soliton theory. One soliton solution, 
which correspond to a discrete loop of the dmKdV equation, is 
given by 

p" exp (o2t) p2 

Gq,, = 1 + A p  2" exp(2~t )  ' A - (p2 _ 1 )2 

( p 2 _  l ) ( p -  1) 2 
= (30) 

2G3p2 

o r  

p 2 _  l 
q , , -  - -  sech (log p n  + w t ) .  (31) 

2Gp 

Now let us consider the continuous limit l ~ 0 of the above 

equations. Since we can see from (24) that q, becomes K/2 in 
the limit, we obtain U,, ~ K2/2 and W,, ~ Ks, which coincide 
with the continuous case (Goldstein and Petrich, 1991; Nishi- 
nari, 1997). Moreover, (29) becomes 

OK _ 03K__ + _3 K2 __0K (32) 
Ot Os 3 2 Os 

and the solution (31) becomes 

K = 2a sech ( a ( s  + a a ) t ) ,  (33) 

where a is a constant. Thus the equation and the solution also 
coincide with the continuous case in the previous papers. In 
deriving (33)  we use Gn ~ s when 1 ~ 0 and 

p = exp(aG) .  (34) 

It should be noted that there are other possibilities of choosing 
U,, and W,, in order to satisfy (25).  The simplest one is 

u,, = 1, ( 3 5 )  

W,, = - G , ,  Iq,, ,. (36) 
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Fig. 2lc) 

A loop with transverse perturbation at  (a) t = 86.9, (b) t = 119.5, and (c) t = 173.7 

In this case, we obtain from (21) the lowest-order dmKdV 
equation 

2G dq,, = (1 + G2q~)(q,,+l - q,,-l), (37) 
dt 

which is also completely integrable, and will be used in the 
following. 

4 C o m p a r i s o n  a n d  a Discrete  L o o p  

In order to utilize the soliton approach discussed in the previ- 
ous section to analyze the nonlinear deformation of the discrete 
string, we must compare the dynamics of (15) with that of ( 1 ) 
(Nishinari, 1997). Differentiating (15) with respect to time 
gives 

dt ---5 \ dt - WnAn t,, + \ dt + U,,An nn. (38) 

The compatibility conditions for (38) and (1) are 

dU, 
m _  W,,A,, 
dt 

1 
z - -  m pl (Nn Nn-1 cos A,, i + Q,,-I sin 2x,-1), (39) 

dW,, 
- -  +UnAn 

dt 

1 
z - -  m m pl (Nn I sin A,,_i (Q,, Q,,-i cos An_l)). (40) 

Therefore, Eqs. (20), (21), (39), and (40) for G,,, 0n, W,, and 
U,, are considered as the basic equations which connect the 
dynamics of the string and the discrete soliton theory. It should 
be noted here that these basic equations are general and we can 
apply them to any one-dimensional media like string. 

In the following analyses, we will use the assumptions (22) 
and (23), and focus on a loop soliton (31). It is easily checked 
that (31 ) does not satisfy (39) and (40) exactly. In the continu- 
ous case, however, there is a famous solution which represents 
a loop (Ichikawa et al., 1981; Cohen and Epstein, 1994). There- 

fore we expect that (31) would satisfy (39) and (40) in the the 
continuous limit under some conditions. 

First, we consider a loop soliton in the continuous case. If 
we neglect the bending moment and assuming G,, is a constant 
and we take the continuous limit l --' 0, the compatibility condi- 
tions (39) and (40) give 

dUdt W (  OWOs + KU) = k  Os ' (41) 

d__W+dt U( OW+os KU)= ~ K~g(~g - p  1), (42) 

and (20) and (21) give 

U~ = KW, (43) 

K,= ~S KU + - ~ -  . (44) 

These coincide with the continuous case obtained in our previ- 
ous paper (Nishinari, 1997). 

Exact solution of these continuous equations is given as 

~gg = 1 +~,  (45) 

W = K,, (46) 

K 2 

U = - - ,  (47) 
2 

K 3 

K,, + - -  = w,  (48) 
2 

v2 = k (1 + e)c, (49) 
P 

where J< is the one soliton solution of the mKdV equation with 
the velocity v, which solves (48). The velocity v is related by 
the initial tension e through (49). This relation is the most 
important relation for realizing the continuous loop on the 
string. 
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In order to coincide the discrete loop solution (31) in our 
model with the above continuous solution in the limit 1 --' 0, 
we must calculate the relation between parameters p and G 
which correspond to (49). From the symmetry analysis (Nishi- 
nari, 1997) and using (37),  we obtain the following identity 
valid for one soliton solution (31):  

dq,, _ (p - 1)2 

dt 2G3p 
2 - -  (1 + G q; ,)(q, ,~,  - q,, t ) .  ( 5 0 )  

For A,,, the equation 

n - -  [ a,, - d O ' -  Z ZX,, 

dt k=-~ 
(5~) 

holds, then using (50) we obtain 

( p  - -  1 )  2 
A,, - - - ( q , ,  + q,, ,), (52) 

G2p 

which is valid for one soliton solution (31). By using these 
equations, we can calculate the left-hand side of (39) and (40) 
a s  

dU,, (p - 1)4 
- - -  W,,A,, = 

dt G3p 2 q,,-l(q,, + q,, 1), (53) 

-i 

dW,~ (p - 1 )4 
+ U,,A,, = (2(q,,-1 + q,,) 

dt 2Grip 2 

- (1 + G2q] , ) (q ,  - q,, 2)). (54) 

Neglecting the bending moment on the string, we obtain from 
(39) and (40) 

( p -  1)  4 kc 2G2q,,_t  
- - q , , _ ~ ( q ,  + q,, ,) - (55) 

G3p 2 pl 1 + G2q2_l 

(P - 1 ) 4  (2(q,,_= + q,,) -- ( l  + G2q]_l)(q,,  - q,, z)) 
2Gap 2 

kc 2Gq] i 
- ( 5 6 )  

pl 1 + G2q 2 i 

In order to satisfy both (55) and (56) simultaneously in the 
continuous limit l -~ 0, we must put 
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(p - 1)____~ = _k c(1 + c). (57) 
p2G4 p 

Since p and a are related by (34), the left-hand side of (57) 
become a 4 in the continuous limit. Since from (33), a 2 is the 
velocity of the loop, we see that (57) coincides with (49) in 
this limit. This is a crucial relation of the parameters which 
connects the discrete and the continuous theories. As we can 
see from the above procedure, we usually neglect the bending 
moment when we consider loops. The effect of the bending 
moment will be investigated numerically in the next section. 

5 Numerica l  S imulat ions  
tn this section, we will simulate the dynamics of the string 

by using the discrete model proposed in Section 2. The dynam- 
ics and stability of loops is investigated in the following three 
ways. As we mentioned before, (31) is not an exact solution 
of (39) and (40), but if we take I to be small enough and keep 
the relation (57), then we can simulate the loop soliton by 
using the general basic Eqs. (20), (21), (39), and (40) in a 
desired order of accuracy. 

In the simulations, the fifth-order Runge-Kutta method with 
adaptive step-size control is used in order to integrate the time 
derivative. We set l = 0.2, and the number of beads is 500 in 
all the simulations. 

5.1 Stability of a Loop. First, we check the stability of 
a single loop against some kinds of perturbations. In these simu- 
lations, we add two kind of perturbation to the loop: one is the 
transverse perturbation, and the other is longitudinal. When we 
add transverse perturbation, it is observed that the perturbated 
wave will go through the loop after a collision (Fig. 2), and 
we can observe that the loop keeps its shape and velocity. In 
the case of adding longitudinal perturbation, it is interesting to 
mention that the perturbated wave is reflected after the collision 
instead of going through the loop (Fig. 3). In both cases, we 
can show by simulations that the loop is stable due to the small 
amplitude perturbation. These results may be shown by the 
stability of the one soliton solution of the mKdV equation (Kuz- 
netsov, Rubenchik, and Zakharov, 1986). We can rewrite the 
mKdV equation 

3 
K, = K,,, + = K=K, (58)  

2 

as a canonical form 

0 6H 
K, -- (59) 

OS & ' 

where H is the third conserved quantity of the mKdV equation 
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K 4  )ds 
There are other conserved quantities 

II = ~_~ Kds, (61) 

h = - -  ds. (62) 
2 

Here we assume traveling wave type solution K = K(s - Vt), 
then substituting this into the mKdV equation and integrating 
it once with respect to s gives 

K 3 

Ks, + - -  + VK = 0. (63) 
2 

The crucial step is that we can rewrite this into the variation 
problem 

6 6-~ (H - VI2) = 0, (64) 

where V plays the role of a Lagrangian multiplier. Though we 

would not discuss in detail in this paper, we can show that the 
bounded solution of  the mKdV equation is obtained only in the 
case V < 0 and also we can prove the boundedness of the 
Hamiltonian (Kuznetsov et al., 1986). Considering these facts 
and (64),  the stability of the one soliton solution is shown in 
the Lyapunov sense. 

5.2 Making of a Loop.  Let us consider the way of mak- 
ing of the loop soliton by moving a boundary. When we focus 
on one point on the string during the loop propagation, we can 
show that the point moves as 

xo= h + htanh ( (~)3(t  + C)) (65) 

yo= hsech ( (~)3(t  + C)) (66) 

in the continuous case. In deriving (65) and (66) ,  we use the 
relation 
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and (c) t = 290.0. We start moving a boundary at t = -200.0. 

7 4 4  / Vol.  65,  S E P T E M B E R  1 9 9 8  T r a n s a c t i o n s  o f  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 

1 

-i 

-2 

-3 

-4 

4 

3 

2 

1 

-i 

-2 

-3 

-4 

Y 

I , , , , 410 , , , , 610 l , , i I , , , , I , 
20 80 100 

,X 

Fig. 5(a)  

/ -'~ 2'0 .... 4'0 " 6'0 8'0 " i00 

X 

Fig. 5 (b )  

4 

I I /  ~o oo ~o ~o ~oo 

_i 
Fig. 51c1 

Fig. 5 Making a loop after crit ical value of  K (K = 0.15) at (a) t = 206.2, (b) t = 
217.1, and (c) t = 228.0. We start moving a boundary at t = -200.0.  

Journal of Applied Mechanics SEPTEMBER 1998, Vol. 65 / 745 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4 

Y 

-I 

-I 

J 
2O 

20 40 60 80 i00 

-i 

X 

Y 

Fig. 6(a)  

Y 

X 

Fig. 6(b)  

Fig. 6(c) 

Fig. 6 Coll ision of similar loops at (a) t = 0.0, (b) t = 43.4, and (c) t = 76.0 

746 / Vol. 65, SEPTEMBER 1998 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(: ) .  (:)  - - =  cos Kds , - - =  sin xds . (67) 
ds ds 

Subtracting t from (65) and (66) we obtain 

(x0 - h)= + y~ = h 2. (68) 

Therefore if we move left boundary along a semicircle, then 
we can make a loop on the string. First, we move the boundary 
by the exact functions (65) and (66) ,  then it is observed numeri- 
cally that a loop is formed without any radiation and it propa- 
gates stably. 

As discussed in the previous section, we neglected the effect 
of bending moment up to now. Let us consider the effect when 
we make a loop by the above means. Numerical results show 
that there occurs an interesting phenomena when we change 
the bending stiffiless K. When the stiffness is small, the loop 
is made with a little radiation, and propagates stably (Fig. 4).  
When the stiflhess becomes large, then the velocity of  the loop 
becomes slower. At the critical value of K ~ 0.11, the loop 
ceases to move forward and stands still at the boundary. Beyond 
the critical value K ~ 0.11, as soon as we move the boundary, 
the loop is reflected and goes around to the opposite side (Fig. 
5).  Then the loop disappears and only flexuous wave propagates 
on the string. Theretbre, we have fbund that there is a maximum 
value of K beyond which the loop cannot be formed. 

5.3 Collision of Two Loops. Finally let us consider a 
collision of loops. We initially set two different loops going in 
the same direction. Since the smaller one is fiaster than the larger 
one, the former will overtake and interact with the latter. If  the 
difference of the two loops is small, we can see that the collision 
is not destructive to each loop (Fig. 6) and maintains its shape 
after the collision. This situation can be considered as the special 
case of two soliton solutions. In our previous paper (Nishinari, 
1997), we have shown that only the soliton solution of traveling 
wave type can satisfy the elastic theory by using the reductive 
perturbation method. One soliton solution can, of course, satisfy 
this condition, and the special cases of two soliton solutions 
can also satisfy the condition up to some perturbated order, 
i.e., breather soliton and two similar loops' solution (Nishinari, 
1997). Since we can see that the collision of two similar loops 
seems to keep the nature of the traveling wave type in the course 
of time, the result of the stable collision in Fig. 6 coincides 
with the fact that we have shown in this paper. On the other 
hand, in the case where the difference of  the two loops are not 
small, we can see that the loops are largely disturbed by the 
collision. This result makes us sure of  the fact that only the 
soliton solution of the traveling wave type can satisfy the elastic 
theory and general soliton solutions, and that more than two 
soliton solutions do not exist in the real elastic string. 

6 Concluding Discussions 
In this paper we have proposed a discrete model for an exten- 

sible string which coincides with the continuous theory in the 

limit. We have also obtained the general equations which con- 
nect the discrete string theory and the discrete soliton theory, 
i.e., (20),  (21),  (39) ,  and (40).  By using these basic equations, 
we investigate numerically the dynamics and stability of the 
loop soliton from various points of view. 

First, we have obtained the analytical relation between the 
width of the loop and the initial tension of the string, which is 
the most important relation for analyzing loops by those basic 
equations. Next, it is found numerically that a one-loop soliton 
is stable against large perturbation and the direction of the re- 
flected wave changes d u e t o  a kind of perturbation. When we 
move a boundary along a semicircle including the effect of the 
bending moment, there is a critical value of stiffness which can 
form a loop. We think that at the critical value, the stress in 
the string balances the initial accelerating force at the boundary. 
It is a future problem to calculate this critical value analytically. 
As for the collision of loops, if the two are similar, then it is 
observed that the two loops do not break after collision. Com- 
paring a continuous string and a discrete string, this result coin- 
cides with our former analysis by the soliton theory (Nishinari, 
1997). This stability is also explained clearly as follows: From 
(57),  we see that there is a one-to-one correspondence between 
the initial tension and the size of the loop. Thus, it is impossible 
for there to exist more than two loops, which have different 
sizes, on one string. 

Since there has been much research on strings, such as cables, 
polymers, vortex filaments and magnetic fields, we expect that 
our formulation can apply to the analysis of these fields. 
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Elastoplastic Micromechanical 
Modeling of Two-Dimensional 
Irregular Convex and Nonconvex 
(Re-entrant) Hexagonal Foams 
A nonlinear micromechanical model for  two-dimensional irregular hexagonal foams 
has been developed that allows Jbr anisotropy in morphology and~or material. Based 
upon the orientation, cross section, length, and material properties of  each strut, the 
resulting microlevel beam behavior within the unit cell determines its structural 
properties. Nonlinearity is introduced as coupled elastoplastic beam behavior, where 
the elastoplastic behavior of" each beam is considered. The analytical .formulation 
for  the stiffness matrix of  the general elastoplastic unit cell is .found by considering 
compatibility and equilibrium of the unit cell. The structural properties of  the elas- 
toplastic unit cell are embedded in a continuum finite element model as material 
properties, thus capturing the microstructure of  the foam in an accurate and efficient 
model. Structural nonlinearity is therefore directly linked to localized plasticity and 
its evolution at the microlevel. Elastic analyses investigated the degree of  anisotropy 
in structural properties that was induced by various' morphological changes. The 
differences in stress and deformation behavior between a regular hexagonal foam and 
a re-entrant foam were also demonstrated. Plastic analyses showed how structural 
nonlinearity could be explained by localized microstructural behavior. The advantage 
of  this micromechanical model is that it allows a study of  the effects of  morphology 
and~or material anisotropies on the overall j~bam behavior. 

1 Introduction 

Many familiar materials have a cellular, or foam, structure in 
order to provide a certain amount of stiffness and strength with 
minimal weight. Biological materials tend to arrange into an 
architecture that satisfies the mechanical requirements of the envi- 
ronment with the least amount of material. Trabecular bone, for 
example, is a porous material with architectural symmetry that 
depends on the loading situation. Cork is a common cellular 
material having a closed-celled hexagonal (honeycomb) architec- 
ture that, conveniently, has a Poisson's ratio of zero for loading 
in the out-of-plane direction. Man-made honeycomb structures 
are used in aerospace structures, skis, and other applications 
where a stiff structure with minimal weight is required. Cellular 
materials occurring in nature as well as most of those manufac- 
tured by man have a cell structure with interior angles that are 
convex, resulting in a structure with a positive value of Poisson's 
ratio. Foams in which some of the interior angles of the cell 
structure are concave are commonly called "re-entrant" foams, 
and have the special characteristic of negative Poisson's ratio. 
Closed and open-celled polymer foams are used in a wide range 
of applications in the aerospace and automotive industries. 

Early work in elastic foam mechanics was conducted by Gent 
and Thomas (1959, 1963), in which the foam was modeled as 
thin threads connecting rigid joints. The effective Young's modu- 
lus of an open-celled foam was related to the relative density of 
material by assuming that the threads only transmit axial loads. 
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A number of later analytical studies have incoq3orated bending 
deformations of struts (Choi and Lakes, 1995; Gibson and Ashby, 
1982; Ko, 1965; Menges and Knipschild, 1975; Patel and Finnie, 
1970; Warren and Kraynik, 1987, 1988, 1991), which is under- 
stood to be the dominant deformation mechanism for small defor- 
mations of an open-celled foam. The negative Poisson's ratio 
behavior of re-entrant honeycomb has been investigated in sev- 
eral studies (Lee et al., 1996; Gibson and Ashby, 1988; T. L. 
Warren, 1990). Lakes (1987) was the first to report successful 
fabrication of three-dimensional re-entrant foam materials. Friis, 
Lakes, and Park (1988) gave transformation and mechanical test 
results for both polymer and metallic (copper) re-entrant foams. 
This inspired further experimental (Choi and Lakes, 1992) and 
analytical (Choi and Lakes, 1995) studies of re-entrant foam 
mechanics. Comprehensive reviews of experimental and theoreti- 
cal work on foams has been provided by Gibson and Ashby 
(1988) and Hilyard (1982). 

Gibson et al. (1982) considered the mechanics of a two- 
dimensional regular hexagonal foam. The four independent 
elastic constants were found using standard beam analysis to 
describe bending of the cell walls, and the elastic and plastic 
collapse stresses were calculated (axial beam deformations not 
considered). The work was then extended to the study of three- 
dimensional foams (Gibson and Ashby, 1982), where a simple 
dimensional analysis provided expressions for the dependence 
of foam properties on density. Extensive comparison with ex- 
periments proved that the mechanics of foams could be under- 
stood in terms of the mechanisms of bending, elastic buckling, 
and plastic collapse of the cell walls. Huber and Gibson treated 
anisotropic foams by considering a cell shape-anisotropy ratio, 
R, relating the mean intercept lengths in the out-of-plane and 
in-plane directions (Huber and Gibson, 1988). The in-plane 
architecture was regular in their analysis. Ratios of the moduli, 
the elastic, plastic, and brittle collapse stresses and of the frac- 
ture toughnesses in the out-of-plane direction to those in-plane 
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Fig. l(a) The hexagonal array and (b) the periodically repeating unit 
cell for the array 

were given, and it was found that the elastic modulus and plastic 
collapse ratio, the two properties most sensitive to cell shape, 
fit well with experiments. 

Warren and Kraynik provided a more rigorous formulation 
of the properties of cellular materials by fully exploiting the 
symmetries associated with a spatially periodic structure. They 
modeled a two-dimensional regular hexagonal foam by analyz- 
ing the structural properties of the smallest repeating element 
defining the spatially periodic array (Warren and Kraynik, 
1987). Considering both axial and bending deformations of the 
cell walls, they showed that such a foam is elastically isotropic 
in the plane, and therefore transversely isotropic. The in-plane 
elastic constants were defined completely in terms of the axial 
and bending compliances of the unit cell beams and of the cell 
material. The ability to treat different strut morphologies (other 
than uniform) is an attractive advantage of the method. The 
same formulation methodology was extended to the case of the 
three-dimensional open-cell foam comprised of regular tetrahe- 
dral unit cells (Warren and Kraynik, 1988), and the elastic 
properties were determined exactly. Warren, Kraynik, and Stone 
formulated a constitutive model for the nonlinear elastic behav- 
ior of a two-dimensional regular hexagonal foam, where the 
large deformation effects were modeled by a foam with a pin- 
jointed structure (Warren et al., 1989). The same formulation 
was extended to the finite deformations of the regular tetrahe- 
dron by Warren and Kraynik (1991). 

This work extends upon the two-dimensional hexagonal foam 
work presented by Warren and Kraynik (1987) to the more 
general two-dimensional anisotropic hexagonal foam. The 
model is more general in the sense that this formulation will 
treat the unit cell having struts of different lengths, orientations, 
and material properties. Nonlinearity is introduced as coupled 
elastoplastic beam behavior. An analytical expression for the 
stiffness of the elastoplastic unit cell will be derived by consid- 
ering compatibility and equilibrium requirements of the unit 
cell in an incremental formulation. Based upon the available 
literature, this is the first presentation of the full linear elastic 
and nonlinear plastic behavior of the hexagonal foam with gen- 
eral structural and material anisotropy. 

2 Analy t i ca l  F o r m u l a t i o n  

2.1 Unit Cell Equil ibrium and Constitutive Relations. 

2. i. 1 The Unit Cell. The two-dimensional formulation of 
the mechanics of the general anisotropic hexagonal foam begins 
by identifying the unit cell of the spatially periodic array. Figure 
1 shows an array of hexagonal cells, where the dashed triangle 
between points 1,2, and 3 identifies the area within the symme- 
try planes surrounding the unit cell. This is the smallest cell 

tL 3 

2L1, ~0=~i ~' 

n_3 

Fig. 2 The element face areas and outward unit normals 

which, when mirrored and inverted about the faces of the ele- 
ment in all directions, will produce the hexagonal array shown. 
Notice that this model accommodates the most general degree 
of anisotropy in the foam, as described by different line styles 
for each of the three legs of the unit cell. Each leg can have its 
own length, cross section (regular or tapered), material proper- 
ties, and orientation. By specifying L~, L2, L3, 02, and 03 along 
with the cross section and material properties of each beam of 
the unit cell, the mechanical behavior of the whole structure is 
defined. The x - y  coordinate frame to be used in developing the 
structural model is as shown. The frame is attached to node 
number 3 such that the relative displacements of nodes 1 and 
2 with respect to node 3 can be described, thus reducing the 
number of unknowns in the system. Deformations of this whole 
structure are therefore completely defined by the displacement 
of the two beam midpoints of the unit cell, where the beams 
are modeled as having unit depth in the out-of-plane direction. 

Before proceeding to the structural formulation, the expres- 
sions for the element facial areas and unit normals must first 
be derived. Notice first from Fig. 1 that the volume element 
delineated by the dashed triangle can be shifted such that it fits 
exactly within one of the hexagons of the array, as shown by 
the shaded triangle in Fig. 1. Figure 2 shows that element, with 
all of the known geometric parameters indicated. The vectors 
a~, a2, a3 are expressed in terms of the unit cell geometry by 
attaching a new r - s coordinate frame as shown in the Fig. 2. 
The s-direction is always aligned with leg 1 of the unit cell. 
The vectors are then found to be 

a2 = 2L3 sin (03)i + 2(Ll + L3 cos (03))j 

a3 = -2L2 sin (02)i + 2(L1 + L2 cos (02))j 

al = a2 -- a3. 

The length of each face of the unit element is found by calculat- 
ing the magnitude of the corresponding vector, which yields 

Ai = 2~/L~ + L~ - 2LzL3(cos (02) cos (03) - sin (02) sin (03)) 

A2 = 2~/L~ + L~ + 2LiL3 cos (03) 

(1) 

(2) • 

A3 = 2(L~ + L~ + 2L~L2 cos (02). (3) 

The outward normals to each face are easily found fi'om the 
vectors al, a2, a3. Realizing that the y-component of n~ will 
always be positive and that of n2 and n3 will always be negative, 
the outward normals must satisfy 

n l ' a l  = O, n2'az = O, n3"a3 = O, (4) 

nl = nxj + nylj,  (5) 

nz = n~2i + ny2j, (6) 

n3 = n~3i + ny3J, (7) 

which yields 
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where 

L~cos  (02) - L 3 cos (03) 

,4 . .  [(L 3 cos (03) - L2 cos (02)) 2 
(L~ sin (0~). + L2 sin .... )) ~ .  ~ (G)_ ~ L2 sin (02)) ~ +1 

( 8 )  

(9) ny l 
/fL~ cos  (03) - & cos  (8~))~ + 1 

~ ( L 3  sin (03) + L2 sin (8a)) 2 

Li + L3 cos (03) 
/. , ( lO)  

L3 s in  (03 )  I~] L ~ ( s i n  ( 8 3 ) )  2 + 1 
1 

1 
ny2 / (LL +-L3-c°s(03))2÷ 1 ( l l )  

~J L~(sin (83)): 

- (L1  + L2 cos (82)) 
n,3 = , (12) 

/ ( g :  cos  
/-a sin (02) I~ L~(sin (02)) a + 1 

1 
n , 3 = -  + 1 

L~(sin (02))- 

2.1.2 Kinematics of the unit cell. The kinematics of the 
unit cell is completely defined by the relative displacements of 
the beam midpoints and the relative displacement and rotation 
of the junction point. Notice that the rotations of the beam 
midpoints are not independent variables since the moments 
there are zero due to symmetry conditions. We consider that 
the deformation field describes the relative motion of the beam 
midpoints while the location and rotation of the junction point 
is determined by enforcing local equilibrium. 

Consider now a homogeneous strain increment de. The rela- 
tive incremental displacements d61, d62 are given by 

(d 'x ,~  = [dexx dexy](rx,)  (14) 

d6y i/I L dexy d%, j \ ryi / ' 

for i = 1, 2, where r~, rz are the position vectors of nodes 1 
and 2, respectively, from node 3. Looking at Fig. 1, the position 
vectors are 

rl  = (L3 sin (83))i + (Lj + L3 cos (83)) j ,  (15) 

r2 = (L3 sin (03) + L2 sin (02))i + (L3 cos (03) 

- L 2 c o s ( 8 z ) ) j .  (16) 

The incremental displacements in Eq. (14) are relative displace- 
ments of nodes 1 and 2 with respect to node 3. If the incremental 
displacements of  the three nodes are dAx,  dA2,  and dA3,  then 
the relative displacements are 

d51 = d A l  - dA3 = dS~ti + dSylj, (17) 

d62 = dZX2 - dZX3 = d6,.2i + d6y2j. (18) 

Expanding the system in (14) with Eqs. ( 1 5 ) -  (16),  the com- 
ponents of the incremental displacements in terms of the strain 
increment are 

d6~l = dG~L3 sin (03) + d%(Ll  + L3 cos (03)), (19) 

d6yl = d%,L3 sin (83) + d%(Ll  + L3 cos (03)), (20) 

d6~2 = dG~(L2 sin (82) + L3 sin (83)) 

+ dG.y(L3 cos (03) - L2 cos (02)), (21) 

n÷ 
i 
i 
I 

- Vl 
L1 

L3 j . . . . . . . . . .  

V3 X 

Fig. 3 Free-body diagram of the unit cell 

d6y2 = dGy(L2 sin (0,_) + L3 sin (03)) 

+ dG.y(L3 cos (83) - L2 cos (82)). (22) 

2.1.3 Displacement-Force Relations for the Unit Cell. To 
establish the displacement-force relations for the structure, an- 
other coordinate system (G ~) is placed with its origin at the 
junction point O as shown in Fig. 3. Notice that the (G q)  
frame is parallel to the (x, y) frame, but shifted fi'om point 3 
to point O. Isolating the unit cell in Fig. 3 as a free body in 
equilibrium, we denote the force at the three beam midpoints 
in terms of components Pi parallel to the beam axis and Vi 
normal to the beam axis, where the index i refers to the node 
number. Only axial and bending deformations of each beam are 
considered, where the Pi are axial forces and the V~ are trans- 
verse forces. Since shear deflections of beams are neglected and 
conventional beam theory is used to model the unit cell strut 
deformations, the current model is only valid for porous foams 
consisting of long, slender struts. The spatially periodic nature 
of the cell array requires that the individual beams deform sym- 
metrically about their midpoints, so there is no resultant moment 
across the section at the beam midpoints. 

Now consider some increment in the forces Pi and V~ as a 
result of an incremental deformation. In the general coupled 
beam, the axial and transverse tip displacements are affected 
by both forces. The incremental axial and transverse tip dis- 
placements for the ith beam in terms of  the incremental forces 
are therefore 

dA,i = M,  idPi + MvidVi, (23) 

dA ,  = NmdPi + NvidVi, (24) 

respectively, where Mp~, Mvi are the axial compliances due to 
the incremental forces dP~, dVg and Ne~, Nvl are the bending 
compliances due to dPi, dV~. Consider further an incremental 
rotation dR = d0k  of the junction point O, where dO is the 
relative rotation of the junction point with respect to the rigid 
rotation of the cell. The resulting incremental displacements of 
nodes l - 3  are found from du; = R × pi, where p; is the 
position vector from O to node i as follows: 

Pl = L i j  

p2 = L~ sin (02)i - L2 cos (02)j  

P3 = -L3 sin (03)i - L3 cos (03)j .  

Combining tip deflections due to incremental axial and trans- 
verse forces and a junction point rotation, the total incremental 
tip deflections of  each node are 

dA, = (dA,, - d O L , ) i  + (c/Aa~)j, (25) 

dAz = (dA,,2 sin (Sz) + dA,z cos (82) + dOLe cos (82))i 

+ ( - d A , 2  cos (82) + d&,2 sin (82) 

+ dOL2 sin (02)) j (26) 
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dA3 = (-dz2xa3 sin (03) + z2xt3 cos (03) + d~bL3 cos (03))i 

+ ( - A ~ 3  cos (03) - A,3 sin (03) 

- dOL3 sin (03))j ,  (27) 

where the dZ~xai, d~ti are as defined in Eqs. ( 2 3 ) - ( 2 4 ) .  To 
reduce the number of unknowns in the problem, the displace- 
ments of nodes 1 and 2 will be expressed relative to node 3 as 
described by Eqs. (17) and (18). 

Substituting Eqs. (23) - (24) into Eqs. (25) - (27), the com- 
ponents of Eqs. (17) - (18) in terms of the incremental forces 
are 

drxl = NwdV1 + NmdPI  + (Me3dP3 + Mv3dV3) sin (03) 

- (gv3dP3 + Nv3dV3) cos (03) 

- dqt(L1 + 1..:3 cos (03)), (28) 

dry l  = M w d V l  + MpldPl  + (Mp3dP3 + Mv3dV3) cos (03) 

+ (gp3dP3 + Nv3dV3) sin (03) + dilL3 sin (03), (29) 

d6~2 = (Me2dP2 + Mv2dV2) sin (02) 

+ (Ne2dP2 + Nv2dV2) cos (02) 

+ (Me3dP3 + Mv3dV3) sin (03) 

- (Np3dP3 + Nv3dV3) cos (03) 

+ dO(L2 cos (02) - L3 cos (03)), (30) 

rotation dqJ that equilibrate the structure under the given relative 
incremental displacements dry, d62. Once the incremental reac- 
tions are known by simultaneously solving Eqs. (28) - (31 ) and 
( 3 2 ) -  (34), the incremental stresses acting on the area element 
enclosing the unit cell can be calculated. 

2.1.5 Stress-Strain Relations. The incremental tractions 
on faces 1 and 2 are defined as 

dtl  = dtxti + dtyjj = n ~ . d a  = (&r~n~t)i + (&r~ynvl)j (35) 

dt2 = dtx2i + dtyzj = n2"da = (da~m2)i  + (dcr~yny2)j (36) 

where nx~, nyt, nx2, ny2 are the unit normals given in Eqs. 
( 9 ) -  (13). The incremental surface tractions can be calculated 
directly from the incremental forces as 

dtl dVl i + dPl j 
= A---7 -~ -  (37) 

dP2 sin (02) + dV2 cos (02) . 
dt2 = l 

A2 

-dP2 cos (02) + dVz sin (02) 
+ j .  (38) 

A2 

Substituting Eqs. (37) - (38) into (35) - (36), the stresses in 
terms of the unit normals and the incremental forces are 

do.~ 

do'x~ = -dVIA2ny2 + dP2 sin ( 02)Alnyt + dV2 cos ( 02)Alnyl 

A1A2(n,2nyl - nxlny2) 

dPiA2(nxzny~ - nxlny2) - dViA2n~ln~2 + (dP2 sin (02) + dV2 cos (02))Aln~l 

do-xy = 

AiA2nyl ( nx2nyl - nxlny2) 

dViA2nx2 - dP2 sin (02)Alnxl - dV2 cos (02)Alnxl 

A1A2(nx2nyl -- nxlnv2) 

(39) 

(40) 

(41) 

d~y2 = - ( M e 2 d P 2  + Mv2dV2) cos (02) 

+ (Ne2dP2 + NvzdV2) sin (02) 

+ (Mp3dP3 + Mv3dV3) cos (03) 

+ (Np3dP3 + N~3dV3) sin (03) 

+ dq,(L2 sin (02) + L3 sin (03)). (31) 

Equations ( 2 8 ) -  (31 ) expresses the two components of the 
relative incremental displacements of nodes 1 and 2 with respect 
to node 3 in terms of seven unknowns: dP~ - dP3, dV~ - dV3, 
and d o . The equations of equilibrium will provide the three 
additional equations needed to solve the system. 

2.1.4 Cell Equilibrium. Equilibrium is governed by two 
force balances and one moment balance, as follows: 

dFx = dP2 sin (02) - dP3 sin (03) + dVl 

+ d V 2 c o s ( 0 2 )  + d V 3 c o s ( 0 3 )  = 0 ,  (32) 

dFy = dP1 Z dP2 cos (02) - dP3 cos (03) 

+ d V z s i n ( O 2 ) - d V 3 s i n ( 0 3 )  = 0 ,  (33) 

dMz = -dV~L,  + dV2L2 + dV3L3 = 0. (34) 

This brings the total system to seven equations with seven un- 
knowns. The solution to the system is a set of incremental 
reaction forces dP1 - dP3, dV~ - dV3, and junction point 

Given some increment in the strain field on the unit cell, the 
incremental displacements can be found from Eqs. (19 ) - ( 2 2 ) .  
Equilibrium and compatibility conditions then yield the corre- 
sponding increment in the stress field, given by Eqs. ( 3 9 ) -  
(41). The incremental stiffness matrix is then computed by 

Cijkl = O0"ij = 00"_____~ Otto OF,, Ore (42) 
Oekt Ot,, OF, 060 Oekl' 

The analytical expressions for the terms in (42) are extremely 
large for the general model with the seventeen variables Mm - 
Me3, Mvl - My3, Nm - Np3, Nvl - Nv3, L1 - L3, 02, 03. It is 
left to the reader to use a symbolic math software package to 
solve the given system of equations and generate the stiffness 
expressions. 

For the special case of the elastic (decoupled) regular hexag- 
onal cell, where Li = Lz = L3 = L, Mm = Mpz = Me3 = M,  
My1 = My2 = My3 = Nm = Nm = Np3 = O, NH = Nv2 = Nv3 
= N, 02 = 03 = 60 deg, the analytical expression for C reduces 
to 

`5 (U + 3M) `5 (U - M) 0 \ 
1 2 M ( N + M )  1 2 M ( N +  M) 

/ 

`5 (N - M) `5 (U + 3M) 
C = 1 2 M ( N + M )  1 2 M ( N +  M) 0 , (43) 

,5 
0 0 6(N + M) 

which is the same result given by Warren and Kraynik (1987). 
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Given the stiffness matrix, the effective Poisson's ratio u~2 
relates the lateral deformation in the 2-direction to the deforma- 
tion in the 1-direction under uniaxial load in the 1-direction. 
This is computed by 

ljel 2 -- e212 _ C12C3_~ - C13C23 , (44) 
C{1 C22C33 -- C223 

where the 1 superscript indicates that the load is in the 1- 
direction. Similarly, the effective Poisson's ratio u~ relating 
the lateral deformation in the 1-direction to the 2-direction de- 
formation under uniaxial load in the 2-direction is 

El21 C12C33 - -  Ci3C23 
LJ~i e~ 2 C11C33 _ C123 , ( 4 5 )  

where the 2 superscript indicates that the load is in the 2- 
direction. 

The effective moduli in the 1 and 2-directions under uniaxial 
stresses 0-~ and 0-2, respectively, are 

0-1 

-C1lC22C33 + C11C223 + C122C33 - 2C12C13C23 + C123C22 

-C22C33 --[- C~3 

(46) 

0- 2 
E ~ = - -  

E2 

-C1lC22C33 --1- C11C~3 + C122C33 - 2C12C13C23 + C~3C22 

-C l1C33  -q- C123 

(47) 

It is useful to introduce a parameter that may be used to 
measure the degree of anisotropy in material behavior of a 
general hexagonal foam. For an elastically isotropic material 
the constitutive matrix must have the following form: 

C = X k + 2 #  . 
0 0 

A measure of the degree of anisotropy is therefore indicated by 
the values of the following anisotropy parameters: 

Cj1 
Jl = C2---~ ' (48) 

C12 + 2C33 
J2 (49) 

Cn 

An elastically isotropic foam will have J~ = ./2 = 1, while any 
anisotropy will result in values other than 1. 

2.2 Square Beam Compliances. For the analysis, the 
beams of the unit cell will be modeled as a regular square beams 
having side dimensions of 2b~, 2b2, and 2b3 for beams 1, 2, 
and 3, respectively. Nonlinearity will be introduced by consider- 
ing that the beams are composed of elastic-perfectly plastic 
material. The elastoplastic behavior of a square beam with axial 
and transverse tip loads P and F is well known from classical 
solutions. The beam can exist in one of three deformation 
modes: 

1 Elastic: F ~ F~t 
2 Mode 1 Plastic: Fel < F --< Flcrit,  
3 Mode 2 Plastic: F > Flcrlt, 

where 

I 
(50) 

1 
Florit = (8b4~r~ _ p2  + 2Pb2cry),  (51) 

6bL0-y 

where I is the area moment of inertia of the beam cross section. 
Mode 1 plastic corresponds to the case when yield is only 
occurring on one surface of the beam, while mode 2 plastic 
corresponds to that when both surfaces are at yield. 

The elastic compliances of a square beam are 

L L 
M e  = A E  4 b 2 E  , (52) 

M v  = 0, (53) 

Np = 0, (54) 

L 3 L 3 

N v  3 E I  - 4 b 4 E  " (55) 

The analytical solutions for mode 1 tip deflections in the 
axial and transverse directions are, respectively, 

1 
A~, - ( _ p 2  + c l P  + c2), (56) 

1 2 F E b  

1 
A~ 108F2E--------b (_p3  + c3p2 --k ¢4 P --k ¢5), (57) 

and for mode 2 deflections are 

1 
A] - ((4b - 1)P 2 + d i P  + d2),  (58) 

1 2 F E b  

1 
A~ - 108F2E--------------- ~ ( - 1 3 P  3 + d3 P2 + driP + ds ) ,  (59) 

where the coefficients in each set of equations may be found 
in the Appendix. 

The mode 1 and mode 2 compliances then arise from taking 
derivatives of ( 5 6 ) - ( 5 9 )  with respect to the forces 

M~ - OA~ M~ = OA.___~ (60) 
OP ' O F  ' 

• o zx l  o z x l  
N ~  = OP ' N~/= 0---F- (61) 

Depending on the mode of the beam, the appropriate compli- 
ances are used in the formulation of the incremental constitutive 
relations described in the previous section. The analytical ex- 
pressions for ( 6 0 ) - ( 6 1 )  are fairly lengthy for modes 1 and 2, 
and are not given here for brevity. 

3 Finite Element  Procedure  
The power of the structural formulation developed in Section 

2 is its ability to model the evolution of plasticity at the beam 
level within the unit cell. Finite element analysis of the mechan- 
ics of a plastic foam requires an incremental procedure, since 
the stiffness of each cell will change as the plasticity evolves. 
By embedding the unit cell incremental constitutive model into 
a continuum finite element model, localized plastic regions 
within the structure can be followed. An important requirement 
is that the foam specimen be large compared to the scale of 
the unit cell. In such a case, the assumption that the unit cell 
approaches a continuum element is reasonable. 

An explicit integration of the constitutive relations is used in 
this article. The corresponding strain-controlled finite element 
algorithm proceeds as follows: 
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Fig. 4 The unit cells for groups 1-4 

4.  

1 Given a strain increment (dexx, d~yy, •xy), obtain the unit 
cell incremental displacements using Eqs. ( 1 9 ) - ( 2 2 ) .  

2 Determine the compliance of each beam based upon the 
cell reaction forces from the previous step. 

• If the beam is elastic, use Eqs. ( 5 2 ) -  (55).  
• If  the beam is plastic, use Eqs. (60) - (61) for the appro- 

priate mode. 

3 With the known geometry and compliance parameters 
and the incremental displacements, solve Eqs. (28) - (31 ) and 
( 3 2 ) -  (34) for the incremental reaction forces d P~ - dP3, d Vj 
- dV~, and d~.  

4 Compute the total reaction forces (previous plus current 
increment) and find the stresses using Eqs. ( 3 9 ) -  (41).  

Global equilibrium is enforced at each step by means of 
a Newton iterative procedure. Our numerical experimentation 
shows that convergence is achieved in two iterations with an 
imposed tolerance of 10 9 of the initial unbalanced quantity. 

4 R e s u l t s  

4,1 L i n e a r  E l a s t i c  B e h a v i o r .  The mechanical behavior 
is strongly dependent on the morphology of the foam, even for 
samples having equivalent relative densities. This knowledge 
can be exploited in designing special purpose or ad-hoc foams 
with desired directional properties. As an example of  the strong 
influence that foam morphology has on the mechanical behav- 
ior, we present the following four unit cell cases: 

1 Regular: Li = /4 = L3 = 1 mm, bl = b2 = b3 = 0.1 mm, 
02 = 03 = 60deg ,  El = E2 = E3 = 10GPa,  

2 Orientation anisotropy: L~ = /4 = L3 = 1.1239 mm, same 
b's, 02 = 80 deg, 03 = 20 deg, E~ = E2 = E3 = 10 GPa, 

3 Length anisotropy: Lt -- 1 r a m , / 4  = 1.5 mm, L3 = 2 mm, 
bl = b2 = b3 = 0.1444 mm, 02 = 03 = 60 deg, El = E2 = 
E3 = 10 G Pa, 

4 Re-entranffL~ = /4 = L3 = 1.576 mm, b~ = b2 = b3 = 
0.075 mm, 02 = 03 = 110 deg, E1 = E2 = E3 = 10 GPa. 

The morphologic parameters have been chosen such that the 
relative density of the unit cell in each group is identical, having 
a value of  0.1155. The relative density is calculated from 
t~ Li /A,  where A is the area of the triangular element surrounding 

3. 

Fig. 5 Foam specimens of groups 1-4, (thicknesses not to scale) 

the unit cell and ti = 2bi are the beam thicknesses. The purpose 
of enforcing that the cells have the same density is to isolate 
the effects of  various architectural anisotropies. 

Figure 4 shows the unit cells for each group, with the element 
areas and outward normals indicated. Figure 5 shows a foam 
specimen of each group. The constitutive matrices for eaeh 
group, obtained through the procedure described in the first 
section, are 

0 ) 
C 1 =  5.6592 5.8878 × 104, 

0 0 0.1143 

0.8847 3.0580 0.4158~ 
C 2 = [ 3.0580 13.0444 1.7971J × 104, 

\ 0 . 4 1 5 8  1.7971 0 . 3 0 7 1 /  

11.4480 8.0107 0.9753~ 
C 3 = 8.0107 5.8884 0 .6296J  N 104, 

0.9753 0.6296 0 . 3 6 4 0 /  

7.3112 -1 .8490  0 ) 
C 4 = -1 .8490  0.4804 0 

0 0 0.0038 
N 10 4. (62) 

The anisotropy parameters for each foam are shown in Table 
1. Notice again that the regular hexagonal cell (group 1 ) is 
transversely isotropic and normal stresses are unaffected by 
shear deformations (independent of coordinate frame).  As soon 
as geometric or material anisotropy is introduced, as in groups 
2 and 3, the stiffness matrix is no longer isotropic and shear 
coupling is introduced. The constitutive matrix for group 2 is 
more strongly anisotropic than that for group 3, indicated by 
larger deviations of Jj and J2 from 1 for group 2. The stiftness 
properties of  the re-entrant foam cell (group 4) are interesting 
in that the cell is not isotropic and the normal stresses are 
unaffected by shear for the particular reference frame chosen 
(a coordinate rotation would change this). In any elastic foam 
the stiffness matrix will always be symmetric. This is a conse- 
quence of the fact that the system of incremental displacement 
Eqs. ( 2 3 ) - ( 2 4 )  describing the elastic beam behavior is sym- 
metric (recall that My and Ne are zero for the elastic beam). 
Symmetry of the elasticity tensor is associated with the ex- 
istance of a potential function or strain energy function, in this 
case with quadratic terms on the strain components. 

It is instructive at this juncture  to discuss the differences 
between the present model and that of Gibson and Ashby 
(1982),  in which axial strut deformations are neglected. Table 
2 shows the moduli (multiplied by t to account for depth) and 

Table 1 
1-4 

Anisotropy parameters and Poisson's ratios for foam groups 

Group 1 Group2 Group3 Group4 
Ja 1,0000 0.0678 1.9442 15.2196 
,/2 1.0000 4.1509 0.7633 -0.2519 
v~2 0.9612 0.7281 1.4933 -3.8491 
v~l 0.9612 2,4753 0.6640 -0.2529 
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Table 2 Moduli and Poisson's ratios for a re-entrant foam with decreasing beam thicknesses 
from Gibson and Asbhy (1982) and current model (L~ = L= = L~ = I = 1 mm, 261 = 2b~ = 2b~ 
= t , 0 = ~ 0 ~ = 1 1 0 d e g ,  E 1 = E = = E ~ =  10GPa) 

Gibson & Ashby 
v* t i t  E~' (Pa) E~ (Pa) v~ ~ ~z 

0.2 2.442×104 1.586×10 ~ -3.924]-0.255 
0.02 2.442 1.586 × 10 -~ -3.924 -0.255 
0.002 2.442×10 -4 1.586×10 -s -3.924 -0.255 

Overaker, Cuitiflo, Langrana 

2,270x104 1.549x10 a -3.612 -0.246 
2.440 1.586x10 -a -3.920 -0.255 

2.442x10 -4 1.586x10 -~ -3.924 -0.255 

Poisson's ratios for a re-entrant foam from both Gibson and 
Ashby and the current model for varying beam thicknesses. 
Notice that as the beam thickness decreases, the values predicted 
by the two models approach each other. As the cross section 
becomes very small, the bending deformations dominate and 
the current model approaches the model of Gibson and Ashby. 

Finite element simulations of compression of 5 × 5 cm foam 
specimens of groups 1-4  were performed. The boundary condi- 
tions on the lower surface were fixed displacements in the x- 
direction and y-direction. The upper surface had an imposed y- 
displacement of 0.1 mm and fixed x-displacement. All simula- 
tions were performed in one step since the slope is constant. 

Figure 6 shows the resulting distributions for specimens 1-  
3 (left to right), respectively, for ~7~, tray, and Cryy (top to 
bottom). Different plot ranges were used for each of the ~ryy 
plots since the values were quite different between specimens. 
For the other stress plots, the same range was used for all 

specimens for ease of comparison. The stress results for the re- 
entrant foam, specimen 4, are given in Fig. 7. All stresses are 
normalized by E × 10 -6, where E is 10 GPa for each of the 
specimens. 

The stronger anisotropy of the group 2 versus group 3 foams 
is clearly indicated in the stress plots. Comparing the results of 
the re-entrant foam (group 4) with the regular foam (group 1 ), 
notice that a.~ has opposite signs between the groups. Compres- 
sion of the re-entrant foam in the y-direction produces tensile 
stresses in the x-direction at upper and lower surfaces (to main- 
tain the rigid boundary condition), a result of the negative 
Poisson's ratio behavior of the structure. Magnification of the 
small deformation of the foams in Fig. 8 shows the regular 
foam expanding laterally while the re-entrant foam contracts 
laterally under compression. The plots clearly demonstrate the 
significant influence that structural morphology has on the me- 
chanical properties of the foams. 
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Fig. 6 Stresses obtained for specimens 1-3, respectively, normalized by E × 10 6 (left to right) 
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Fig. 7 Stresses obtained for the specimen 4, normalized by E × 10 -e 
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Fig. 8 Original configuration and 30× magnification of 
element mesh for elastic compression of group 1 and 
respectively) 

/B 
the deformation of the finite 
group 4 foams (left to right, 
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-10 

-a 

f. 2 

-4 

-2 

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 
(u/L)/(oy/E) 

Fig. 9 Resultant load versus displacement from a simulation of com- 
pression of an elastoplastic foam (LI  = 1 mm,  L2 = 1.5 mm,  L3 = 2 mm, 
bl  = b2 = ba = 0.0625 mm,  #2 = 03 = 60 deg, E1 = E2 = E3 = 10 GPa)  

4,2 Nonlinear Elastoplastic Behavior. An interesting ef- 
fect of the onset of beam plasticity is that the stiffness matrix 
for the unit cell can become nonsymmetric. This nonsymmetry 
arises directly from the introduction of the plastic beam behavior 
(coupling of axial and transverse forces) with nonsymmetry in 
the system of incremental displacement Eqs. (23) - (24). 

A finite element simulation of compression of a foam speci- 
men was performed with the same boundary conditions used 
in the elastic analysis. The specimen had the same geometric 
parameters as specimen 3 from the elastic analysis, except that 
the beam cross sections were reduced to bl = b2 = b3 = 0.0625 
mm. This was done to ensure that the smallest beam length-to- 
diameter ratio was larger than 5. The elastic part of the simula- 
tion was performed in one step, while much smaller steps were 
taken beyond the yield limit in order to follow the changing 
stiffness of the structure. 

Figure 9 shows the resultant load versus displacement from 
the compression simulation, where the load has been nondimen- 
sionalized by the width of the specimen (0.05 m) and the strain 
(u/L) has been nondimensionalized by Cry/E of the beam mate- 
rial. The four points marked 1 -4  denote points at which the 
yield and stress contours will be observed. Point 1 corresponds 
to initial yield within the structure. Notice that the structure 

does not begin to yield significantly until the displacement has 
proceeded considerably beyond the yield point. This can be 
explained by observing the contours of yielding material. Figure 
10 shows the yield and cryy contours at the four points along the 
load-displacement curve. Notice that the yield is very localized 
at point 1, and still is not widely spread at point 2. At the third 
point a larger percentage of the structure is yielding and the 
rate of growth of the plastic region increases as the load is 
transferred to the ever shrinking elastic regions. At point 4 a 
considerable amount of the structure is yielding, indicated by 
the greatly diminished slope of the load-displacement curve. 

Delving deeper to look at the deformation modes of individ- 
ual beams, Fig. 11 shows contours of deformation modes for 
beams 1-3 corresponding to point 3 on the load-displacement 
curve. The results show how the plasticity of each beam contri- 
butes to the overall plastic behavior of the unit cell that is given 
in Fig. 10. Notice that at point 3, the 1-beams are almost entirely 
elastic. Both the 2-beams and 3-beams are predominantly elastic 
or mode 2 plastic, with the 2-beams having further developed 
plasticity than the 3-beams. This directly explains why the yield 
contours in Fig. 10 are skewed in the direction of the 2-beams. 

5 Conclusions 

A general formulation for the two-dimensional anisotropic 
hexagonal foam with coupled deformation behavior has been 
developed in an incremental form that accommodates elas- 
toplastic analysis. The system of governing equations has been 
given so that the constitutive relations may be generated using 
any symbolic math software package. 

Elastic analyses demonstrated the effects of strut orientations 
and lengths on the elastic properties of the structure. The stiff- 
ness matrix of the elastic foam is always symmetric and the 
degree of anisotropy is dictated by the degree of material and/ 
or morphological anisotropy introduced in the unit cell. The re- 
entrant foam shows the same behavior, except that the re-entrant 
morphology introduces a negative Poisson's ratio effect to the 
deformation behavior. Sensitivity studies can be performed to 
more closely study the effects of any morphological or material 
parameter. The elastic foam has a symmetric stiffness matrix 
because axial and transverse beam deflections are decoupled. 
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Fig. 11 Mode contours for beams 1-3,  respectively, corresponding to point 3 on the load-displacement curve in Fig. 9 (elastic: mode = O; mode 
1 plastic: mode = 1; mode 2 plastic: mode = 2) 

Plastic analyses showed how localized regions of plasticity 
develop and grow within the foam structure with continued 
loading. The changes in the load-displacement behavior of the 
foam were explained in terms of the stage of development of 
localized plasticity. As the plastic region expands its rate of 
expansion increases, which is indicated in a strain-controlled 
test by a decrease in the slope of the load-displacement curve. 
The coupled elastoplastic beam model yields a nonsymmetric 
stiffness matrix for the unit cell as soon as nonsymmetry in 
beam behavior of any of the cell beams is introduced. 

The potential of this formulation for use in design of foams 
is particularly attractive. The simplicity and flexibility of the 
formulation allows comparison of many different structural and 
material arrangements, which could prove useful in determining 
a design that has a particular required mechanical behavior for 
a given application. 
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381. d5 = 4f fyb(16bS~ + 2 8 8 b 5 ~  C - 288bScr~B 

A P P E N D I X  
Coefficients  in Eqs. ( 5 6 ) - ( 5 7 ) :  

cl = -4b2cry(2b + 4bA - 4bB - 1), 

c2 = -8b2~ry(-4b3cry-  8b3cr~.A + 8b3cr~.B + 3FL),  

c3 = 36b2o-y(l + 2A - 2 B ) ,  

c4 = 24cryb(-24b3cryA - 10b3o-y + 24b3cryB + 3FL),  

3 2 c5 = --32bko-~. (-3663o-~,A - 14b3o-y + 36b3o-yB + 9FL) ,  

A = In - - ~ - ( - P  + 4b2o-y) , 

B = In (Pb - 4b3cry + FL). 

Coefficients  in Eqs. (58)  - (59) :  

d~ = - 2 b ( 8 b 2 a ~  - 8b2ayB + 8b2o-yC - 2bcr,, + D - A) ,  

d2 = 64b%r~(C - B) ,  

d3 = - 5 A  + 3 ' ~  - 72b2cryB + 72b2~yC + 108b2cr~., 

d4 = -4cryb2(-144b2o-yB + 60b2ay + 144b2cryC - A) ,  

+ 16b3Ao-y-  12b3o'y~/D - 3 ~ F L ) ,  

A = ( ( - P  + 4b2) 2 , 

B = l n ( 6 ~ a ~  ( - P + 4 b 2 ) 2 )  , 

C = In ( 2 ~  ( - P  + 4 b 2 ) )  

D = -24FbLo-y + 48be~r~ - 3 P  2. 
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Bernoulli Numbers and 
Rotational Kinematics 
The representation of  rotation operators in the form of  infinite tensor power series, 
R = e x p ( ~ ) ,  has been found to be a valuable tool in multibody dynamics and 
nonlinear finite element analysis. This paper presents analogous formulations for the 
kinematic differential equations of  the Euler-vector • and elucidates their connection 
to Bernoulli-numbers. New power series such as the Bernoulli- and the Gibbs series 
are shown to provide compact expressions and a simple means for understanding 
and computing some of  the fundamental formulae of  rotational kinematics. The paper 
includes an extensive literature review, discussions of  isogonal rotations, and a 
kinematic singularity measure. 

1 Introduction and Overview 

Through some two centuries the problem of describing the 
orientation of bodies in our three-dimensional world has faci- 
nated men. The names of some of the most distinguished sa- 
vants, such as Euler, Monge, Gauss, Rodrigues, Hamilton, Ja- 
cobi, Klein, and Darboux appear in a historical development of 
the theory. Perhaps all of them were, as (Pars, 1965), "influ- 
enced as much by the intrinsic elegance of the theory [of finite 
rotations ] as by its immediate relevance." A couple of decades 
ago the subject still seemed of interest to only a small group 
of mathematicians and mechanicians and Pars claimed that it 
"has been inadequately represented in some expositions." 

There is certainly no reason to repeat Pars' words today. 
During the last decades wide areas of applications and an enor- 
mous number of papers applying rotational kinematics to the 
field of computational geometry, multibody dynamics, and finite 
element analysis appeared. Wertz (1980), Argyris (1982), 
Hiller (1985), Spring (1986), Shuster (1993), Schaub (1996), 
G6radin (1995), and others review the subject as it now stands. 

Since Gibbs' time it is known that the rotation tensor R is 
expressible in form of an infinite tensor power series (ITPSs), 
R = e x p ( ~ ) ,  the exponential of a skew-symmetric tensor 
@; (Gibbs, 1884). It is rewarding and enlightening to extend 
the idea of ITPSs to the kinematic differential equations (KDEs) 
of the finite rotation vector ~ .  Peres (1979), using Lie-algebra, 
obtained 

= c o e ( , i , ) .  '~,. ( 1 )  

( ~ :  Angular velocity; ~ :  time derivative of ~ ;  c o e ( ~ )  the 
coexponential, (Langner, 1997), of ~ ,  see below.) Except, 
perhaps, for use in quantum mechanics, this result remained 
virtually unknown in kinematics. In most elementary and ad- 
vanced texts on the subject, even the "scalar forms" of Eq. 
( 1 ) remain unmentioned. One possible reason for this gap might 
be the often-cited paper of Stuelpnagel (1964), in which he 
applied involved arguments that eventually led him to rather 
complex expressions. Asserting that the derivation of his final 
result " . . .  requires some lengthy computations, which are 
omitted," his expos6 is not easy to follow and leaves the reader 
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with the unjustified perception of the KDEs of • as being 
clumsy and unattractive. 

Sections 2 and 3 derive the fundamental formulae (rotation 
operator, KDEs) in terms of tensor and scalar power series, 
respectively. In an attempt to unify various results and to obtain 
computationally efficient formulations, new power series such 
as the Bernoulli and Gibbs series are defined, in which the 
rotation angle ~IJ appears always quadratically. The results are 
derived using only elementary tensor algebra, not Lie algebra. 
By this, we hope to make them accessible to a broader class of 
readers. Section 4 discusses isogonal rotations and introduces 
a new singularity measure for parametrizations of SO (3).  Sec- 
tion 5 gives additional material such as composition formulae, 
historical remarks, and a literature review. 

2 Tensor Power  Series 

2.1 Rotation Tensor. The theorem of Euler is without 
much question the most important single theorem in rotational 
kinematics. It states that a general displacement of a rigid body 
B for which a point O is fixed may be regarded as a rotation 
about an axis through O. Hence the displacement of B that 
relates the reference configuration B0 to a subsequent configu- 
ration B1 is determined by the finite rotation (or Euler) vector 

= ~I,n, (2) 

where • is the angle of rotation and the unit vector n points 
along the axis of rotation. The correspondence between rotations 
R and their representation • is multivalued. Symbolically, 

R =  { ~ + n@ia}, (3) 

with ~,~ being 27rn (the identity rotation) and n being .any 
integer. We reduce the multiplicity of this correspondence by 
imposing upon @ the condition 

(4) 

Equation (4) shows that for any rotation, except for rotations 
on the sphere I1~11 = 7r, the map is one to one. For I1'I'11 = ~r 
the vectors • and - ~  denote the same orientation. Treating, 
(pretty much as in elliptic geometry) every pair of diametrically 
opposite points on the sphere as one single point, we eliminate 
this multiplicity. In group theory this fact is expressed by saying 
that the rotation group SO(3)  is topologically equivalent to a 
ball of radius 7r with diametrically opposite points on the surface 
of the ball identified (Srinivasa, 1996, p. 290). 

is a tensor of first order. It can be replaced by a skew- 
symmetric tensor of second-order • such that Va: 
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~ . a = ~ × a .  

( ( × ) :  cross product) • as we shall see, forms the backbone 
of the theory of finite rotations. 

Now, let M0 and Ml be the initial and a subsequent position 
of some point M" ~ :B which experiences the rotation (2).  The 
mapping M0 --' Ml can be represented by a unimodular, proper 
orthogonal tensor R, called the rotation tensor or rotation opera- 
tor: 

OMi = R" OMo. 

Since both R and • describe rotations, R must be expressible 
in terms of • and vice versa. This relationship consists of 
carrying the rotation operator in its exponential form (Gibbs, 
1884): 

R = exp(~*). 

The exponential has an inverse, the logarithm. Consequently, 
the inverse mapping of (7) ,  if it exists (see below), is (Gibbs, 
1884) 

~' = In (R) .  

The above tensor power series are 

(~)~ (~)~ (~)~ 
exp(~ ' )  --- 1 + + + . . . .  

1! 2! ,,=0 u! 
- - ,  (9) 

(1 - ( R ) )  ~ (1 - ( R ) )  2 
In (R)  - 

1 2 

_= _ ~ (1 - ( R ) ) "  
/ J  

u = l  

(5) (.)~ (.)2 (03  
c o e ( . ) : =  1 + + + + . . .  

2! 3! 4! 

(')" 
--- (14) 

,=0 (v + 1)! 

coe(x) ,  x e ~, converges for all finite x. 
• Bernoulli Series: 

Bj B2 B3 
(6) Ber ( . )  := ~ ( . )  + ~ (.)2 + ~ (.)3 + . . .  

co B l  ~ 

£ ~ (o)". (15) 
I~= l 

The scalar constants {B,}, u = 1, 2, 3 . . .  are the Bernoulli 
numbers. They have been introduced by 3. Bernoulli, (Ber- 

(7) noulli, 1713), and have a long and interesting bibliography in 
and of itself (Dilcher, 1991). In our notation, which follows 
(Saalschtitz, 1893) and (Whittaker, 1958), the Bi's are gener- 
ated by the expansion of 

(8) B e r ( x  2)--- 1 - ~ c o t  , x E  N. (16) 

10) 

where 1 is the unit operator. Additionally, one has 

e x p ( T ~ ' T  -1) = T e x p ( ~ ) T  -l and 11) 

in ( T R T  -I)  = T In ( R ) T  1, 12) 

where T is an arbitrary nonsingular tensor and T l is its inverse. 
Hensel (1926) first showed, and it is now well known that 

a power series of some tensor T converges if and only if every 
proper number of T lies inside or on the circle of convergence 
of the corresponding scalar series. The proper numbers of R 
are { l ,  exp ( i~ ) ,  e x p ( - i ~ )  } and the radius convergence of In 
x in the scalar x is - 1 < x -< 1. As a consequence, (8) becomes 
singular for limit = 7r, thereby nicely reflecting the abovemen- 
tioned fact that oppositely directed rotations with I1'I'11 = ~r are 
indistinguishable. Hence, in this case, R does not determine 
uniquely. Equation (7) ,  however, is convergent for all finite 

An alternative formulation of (7) is (Argyris, 1982) 

e x p ( ~ )  = 1 + sin____~ ~ + 1 s i n 2 ( ~ / 2 )  ~ 2 .  ( 1 3 )  
2 ( ~ / 2 )  2 

Such kinds of scalar power series are the subject of Section 3. 
The review of familiar ideas and equations given in this 

subsection should provide sufficient background and motivation 
for obtaining similar results for kinematic differential equations 
(KDEs).  

2.2 K i n e m a t i c  Di f ferent ia l  Equat ions .  We denote by (o)  
a scalar, a second-order tensor, or an element of any other 
algebra which is representable by square matrices of finite order. 

The following power series are sufficiently important to war- 
rant a special and easily recognizable name. 

• Coexponential Series: 

From (16) it is easily verified that Ber (x) converges if and 
only if llxll < 47r 2. From Hensel 's theorem a generalization to 
tensor series follows easily. The reader should note that we 
write Ber (x), not ber (x),  because it is customary to use 
ber (x) for £~=0 ( -1)"(½x)4") / ( (2n)! )2;  see, e.g., Watson 

(1958). 
The following relationships can be verified by consulting 

B romwich (1955 ), Abramowitz (1964), or any other handbook 
of mathematical functions: 

exp(°)  - 1 = ( . ) ' c o e ( . ) ,  (17) 

B e r ( - ( . ) 2 ) =  1 - ( ' - - - ~ c o t h ( ~ ) 2  (18) 

coe (o ) . (1  - ½(°) - Ber ( _ ( ° ) 2 ) )  = 1. (19) 

Equation (19) shows that (1 - ½(-) - Ber ( _ ( . ) 2 )  is the 
inverse of coe (°).  

If B is in smooth motion, it is, with respect to B0, endowed 
with a unique angular velocity f~. ~ ,  being the time rate of 
change of • as observed from B0, we have the following. 

Lemma 1: ~r := f~ - ~*, the so-called noncommutativity 
rate vector (Bortz, 1971 ), is perpendicular to if' : 

, I , . ~  = ,1,. ~ .  (20) 

Proof" Our plan is (we modify slightly the demonstration 
first given by Nazaroff (1979)) to equalize A := (dldt)( tr  R) 
and B := tr ( d R / & ) ;  tr ( ' )  is the trace of the tensor argument 
(.). 

First, because the sum of the proper values of R being 1 + 
2 cos • (or from the canonical form of R) ,  we have t r (R)  = 
1 + 2 cos • and hence A = - 2 ~  sin ~.  

Next, on applying Poisson's differential equation (d /d t )R  
= ~ . R  and the trace operation to (13) we find B = (sin ',Is/ 

) tr ( ~ .  • ). This is clear from the fact that for any symmetric 
tensor S (such as 1 and ~ 2  in (13))  tr ( ~ ' S )  = 0 because 
is skew-symmetric. Then, using the fact that the tensors ~ and 

are both skew-symmetric, we get tr ( ~ .  ~ )  = - 2 ~ .  • and 
therefore B = - 2  sin ~/ffd~. if,. 

Finally A = B gives ~ = ~ ' ~ .  Now ~ = ~ . ~ ,  from 
which follows Lemma 1. [] 
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Theorem I: The kinematic differential equations of ~ are 
the equations which relate • to f~. We have 

= coe ( ~ ) ' ~ ,  (21) 

= (1 - ½ffd - Ber (_@2).  a .  (22) 

coe ( ~ )  is convergent for every finite ~ . Ber ( - ~ ~) converges 
for all • with I]~11 < 27r. 

Proof ~I, is an eigenvector of R. Therefore, observers fixed 
in B0 and 73~ measure the same time rate of change of ~' : 

= R . ~ .  (23) 

The circle (o) stands for time derivatives as observed from 
~ .  Equation (23) holds for any vector a( t) ,  which gt  is an 
eigenvector of R(t) .  If one gets confused about (23), the best 
plan is to resolve ~ in ~ and • in Bo and then to interpret R 
as a coordinate transformation rather than a rotation operator. 

Substituting (23) into the formula of the moving base, • = 
f~ × ~ + ,I*, allows us to eliminate ~' and to obtain a linear 
relationship between f~ and ~ :  

• .f~ = R . ~ -  1 . ~ .  (24) 

Thus we read from (17) the equivalence 

' i , . a  = , i , .  c o e  ( q , ) .  q , .  (25) 

As easily verified, 

= c o e  ( , i , ) .  ,i ,  + a , I ,  (26) 

satisfies (25) for arbitrary values of the scalar variable &. Since 
'I~ spans the nullspace of @, (26) is the general solution of 
(25). 

Note that @ is an eigenvector of coe ( ~ ) .  Scalar multiplica- 
tion of (26) with • leads to @' fl  = ~ "  '~' + &~2. Applying 
Lemma 1 we find that 

& = 0. (27) 

This completes the proof of (21). 
Thanks to (19) and Hensel's theorem, (22) should come 

as no surprise. The proper values of ~* are {0, exp(PI'), 
e x p ( - i ~ ) } .  Equation (22) therefore converges for all 
I1¢,11 < 2~r. [] 

Equations (7), (21), and (22) uniquely determine three of 
the fundamental tensors involved in rotational kinematics in 
terms of their vector invariant ,LI,. The formal anology between 
exp (~ )  and coe ( ~ )  contains a certain elegance. A develop- 
ment of higher-order time derivatives (angular acceleration, 
jerk . . . .  ) in terms of ITPSs would perhaps show that it results 
fi'om some as yet undiscovered even more general rule. 

3 Sca lar  P o w e r  Ser ies  

This section presents formulations for R and the KDEs (21), 
(22) in terms of scalar power series. Scalar series are less 
elegant and lengthen and complicate the formulae in which they 
appear, but they give additional insight and eventually simplify 
computational problems. 

The reader is presumed familiar (see, e.g., Argyris (1982)) 
with the following crucial identities that transform tensor power 
series into scalar power series: 

~ - ~ _  (_1)~ 1~2~,, 1)~ and 

,i,2~ ___ (_1 )~  ,~ , , - ,~ ,¢ ,2 .  (28) 

Rotation Tensor. By the aid of (28), we may express 
Gibbs' formulation (6) in the form 

OM~ = (1 + gib~(kI,2)~ + gib2(g'2)~,2)'OMo, 

= gibo(~2)OMo + gib~(ff'2)ff* 

× OMo + gib2(~d2)(~ 'OMo)~ (29) 

o r  

R -~ 1 + g i b t ( ~ 2 ) ~  + i ~ b ( ~ 2 ) ~  2, (30) 

where 

gibe(o) := ~ ( - 1 ) " ( ' ) ~  i = 1, 2, 3 . . . .  (31) 
,,:0 (2u + i)! ' 

We call these functions Gibbs' series of type i, without any 
certainty that we have settled on this name permanently. 

One could have written, as it is usually (see, e.g., (13)) done, 
gib0(ffd 2) = cos (~ ) ,  gibl(~ 2) = sin ~ / ~  and gib2(~ 2) = 
[ s in2 (~ /2 ) ] / [ (~ /2 )  2] = (1 - cos ( ~ ) ) / ~ 2 .  Our reasons for 
preferring the present course are two: (i) it is formally much 
simpler, and ( i i ) - -and this is important--it  shows that (29) 
depends on • 2 = ~ .  ~ only, and not on • as such. Evaluation 
of gib~ (Rj2) allows to overcome the drawback of superflous 
and computationally expensive root calculations like • = 
+~/~. ~ .  This fact, it seems, has not previously been realized. 

Kinematic Differential Equation. By (28) and (14), 
(21): 

~1 = (1 + gib2(g'2)~ , + gib3(~2)'~'2) ' @ (32) 

= gibl(~2)@ + gib2(~2)~ × ~, 

+ g i b 3 ( ~ 2 ) ( ~ . ~ ) ~ ,  (33) 

o r  

coe ( ~ )  ~ 1 + gib2(~2)@ + gib3(~2)~ 2. (34) 

Equations (32)- (34)  show--and here again comes the punch- 
l ine-- the dependence of the scalar KDEs on ~2 only and not 
on • itself. 

Inverse Kinematic Differential Equation. From (28) ,  
(31), and (22) we get 

1 ~ Ber (~2) ~2~ 
= 1 - ~  ~2 ] ' ~ '  (35) 

1 - Ber (,~2))fl _ ½~ × 

Ber (¢52) 
~2 - - ( ~ ' f ~ ) ~ ,  (36) 

o r  

Ber (~p2) ,~,2. (37) Ber (_@2) _ ~2 

4 Further  Cons iderat ions  

4.1 Isogonal Rotations. There are two major families of 
rotations, isoaxial rotations and isogonal rotations, defined by 
special conditions we place on if,: 

Isoaxial rotations are the family of rotations where only the 
amount of rotation, but not the direction changes; { • = ~Pnl n 
= const }. They form a one parameter subgroup of SO (3) which 
is elementary, but nevertheless of fundamental importance. 

Conversely we shall say that isogonal rotations are the family 
of rotations where only the direction changes but not the 
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amount: { K* = ~-'n [ • = const }. Isogonal rotations do not form 
a subgroup of SO (3).  

An interesting aspect of isogonal motions follows from 
Lemma 1. For these motions ~ .  ~ = 0, since (by definition) 
• . '~' = 0. That is: whatever the isogonal motion, • is perpen- 
dicular to a plane II whose spanning vectors are • and f L  

Now, let us define three vectors nl = ~/ll~I, II, n2 = ~/ll'i'l], 
n3 = f~/llf~ll, and two scalars ~.' = I['i'll and f2 = I1~11. Clearly, 
the quadratic form 

N ( ~ )  ~ (--~-)f~'~ = m . c o e ( t ~ ) ,  n 2 _  _ sinai, ~ (38) 

as well as 

II@llll~[I ~ 
D ( ~ )  -- ~----7-- - ~------7 - Ilcoe ( ~ ) '  n2[I 

= ~/2(1 - cos tp) 
(39) ~p 

are functions of • only and therefore constant if the motion is 
isogonal. When a represents the angle between t~ and f~: 

f l .  @ N(tI,) sin tI, 

cos ~ IIi'llllf~li O ( ~ )  x/2(1 - cos ~ )  

= cos ( ~ )  or (40) 

a = - - .  (41) 
2 

Collecting the above into words we may conclude with the 
following. 

Theorem 2. I f  the motion is isogonal, the trihedral F := 
{ O, n l ,  n2, n3 } is rigid. It is nl _1_ n2, nl K n3 and ce ~ A(n2,  
n3) = ~/2. 

4.2 Singularities, Writers on finite rotations sometimes 
find it interesting to state that "no  3-dimensional parametriza- 
tion can be both global and nonsingular." Apart from the fact 
of its being true we are unable to find reasons for ascribing 
much practical relevance to this statement. These singularities 
are situated at tI, = 27r and therefore (far) outside configuration 
space ! 

In order to make this point a little clearer, let us define a new 
dimensionless quantity: 

Vcs(P~) 
tS(Pi ) - V,,s(Pi-----""~" (42) 

13(Pi ) is called kinematic singularity measure for the parameter- 
ization Pz of SO ( 3 ). Equation (42) applies to parameterizations 
of SO(3) ,  which are expressible as f ( ~ ) n ,  where f ( ~ )  is 
some scalar function in ~I, and n is, as previously, the unit vector 
of the rotation axis. (Generalizations to other three-dimensional 
parameterizations (Euler angles, etc.) are obvious. They are not 
discussed here.) 

Vc,(P~) and Vns(Pi) is explained and the use of f l (P i )  is 
illustrated by considering three examples: 

1 P~: the Euler vector: ~ n ,  
2 P2: the Rodrigues vector (Gibbs vector): tan (qJ /2)n ,  and 
3 P3: the (not so well-known) Wiener vector: tan ( ~ / 4 ) n ;  
Wiener (1962), Milenkovic (1982),  McPhee ( 1991 ), Schaub 
(1996),  and the literature cited there. 

V~,(Pi) is the volume of theconfiguration space of P~. For 
the rotation group, as discussed in Section 2.1, Vcs(& ) is equiva- 

lent to the volume of a ball of radius 7r: V~,,.(P~ ) 4 3 = _~rcTr Vi E 
{ 1 , 2 , 3 } .  

V,,.~(P~ ) is the volume of the ball in which the KDEs are 
nonsingular. To be more precise, the radius of this ball is 
~i,,g(P~), this being the smallest positive value of • where 
singularities of the (inverse) KDEs occur: 

4 3 1 Vc.,.(Pl) = grr(2rr) ,  see above, 

2 Vcs(P2) 4 3 = Urrc , see any textbook on this subject, and 

3 Vet(P3) = 47r(27r)3 see, e.g., Schaub ( t996) .  

It is now seen that 

1 = fl(P2) > /3(P3) = 3(P , )  = 0.125 > 0. (43) 

Conclusion: 
• Pi as well as P3 are examples of globally defined nonsin- 

gular parameterizations of SO (3).  
• No other well-known set of parameters p ,  possess a 

smaller f l (P,)  than the Euler vector or the Wiener vector. 

Remark: The problem of "globally nonsingular" attitude 
description (and related additional results) has been recently 
addressed in Pfister (1995), Schaub (1995), and Tsiotras 
(1997). Reference may also be made to Schaub (1996) who 
constructed an interpretation of the Rodrigues and Wiener vec- 
tor as special cases of a whole family of stereographic parame- 
ters derived from Euler parameters (unit  quaternions) by stereo- 
graphic projection and derived related additional results. These 
parameters have a singularity measure anywhere between 1 and 
0.125. 

5 Remarks  in Passing 
This paper does not attempt to discuss the relative advantages 

of the various ways to represent finite rotations. A large litera- 
ture on this subject exists; references have been given in the 
Introduction. As a rule, those most desirous of generality are 
least successful in grasping the pecularities afforded by a special 
case. Contentions that claim that some set of parameters is better 
than all others are futile. In view of the fundamental importance 
of the exponential form in great many applications, with • as 
the natural variable and because of ~ '  s geometrically vivid and 
physically meaningfull sense, we regard these parameters as 
fundamental. 

Composition Formula .  For some problems it is of interest 
to determine the Euler vector ~3 of a combined rotation in 
terms of two individual rotations tI,~ and ~z .  

In exponential form 

e x p ( ~ 3 ( ~ l ,  ~2) )  = e x p ( ~ 2 ) ' e x p ( ~ l ) .  (44) 

From the composite rotation formula of Rodrigues (see, e.g., 
Gibbs (1884))  or from the Baker-Campbell-Hausdorff (BHC) 
formula for the rotation group we obtain in an abridged notation 
in which ci = cos  ( ~ i / 2 )  and S i = sin (~Iq/2) /~i :  

tI'3 = 2 arcsin (clc2 - s i s21I / i  • 1I/2) (45) 

and 

~.I/3 
~3 = - -  (&c2kO~ + s2c~2  + SlS2~I'2 × ~ ) .  

C3 
(46) 

Baker-Campbell-Hausdorff (BHC) formulas give the product 
of exponentials in terms of one single exponential: exp(C(A,  
B)) = exp(A) exp(B),  where A and B are generators of the 
Lie-group in question. This, as well as the derivation of ~3 = 
if'3 ( ~ 1 ,  ~2)  from Pauli matrices, are quite standard in quantum 
mechanics (Santiago, 1976; Harter, 1978), in engineering me- 
chanics, however, these ideas only received little attention until 
now, an exception is Tsiotras (1993).  
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Readers interested in noncommutative solutions of 
exp(X) exp(Y) = exp(X + Y), where X and Y are matrices, 
may consult Rinehart (1959) and the literature cited there. 

Historical Perspective, Literature Review. 

Rotation Tensor: Gibbs, as it seems, first realized the im- 
portance of the tensor formulae (7) and (8). In the pioneer 
work (Gibbs, 1884) he created what is essentially our modern 
symbolism of vector algebra and analysis (Crowe, 1994). So, 
interesting enough, (7) and (8) (see Gibbs' Chapter V) are as 
old as the vector calculus itself. Among other (early) authors 
who followed Gibbs we cite Spielrein (1926) and Hamel, who 
found important enough to mention it in his Foundations of 
Mechanics; (Hamel, 1909). It has to be noted that (Wilson's, 
(1901)) influential book (subtitled Founded upon the Lectures 
of J. Willard Gibbs) does not mention (7), (8) or other tran- 
scendental functions of tensors. This remark is relevant because 
it was Wilson who first popularized Gibbs' ideas on vector 
algebra and analysis. Gibbs' connection with the exponential 
form of R disappeared from mechanicians' collective concious- 
ness, otherwise one would certainly find it mentioned in the 
comprehensive surveys compiled in the last two decades. For 
much detailed information on the relationships between Cayley 
transforms, proper orthogonal matrices, and matrix exponentials 
the reader is referred to (Tsiotras, 1997). 

Kinematic Differential Equations: There is no classical 
treatise on rational kinematics, dynamics or differential geome- 
try which presents the kinematic differential equation of the 
Euler vector. As a consequence they have never been taught 
and remained unknown to most kinematicians working in this 
field. This gap is serious, reasons to explain it are difficult to 
find; one possible reason has been mentioned in the Introduc- 
tion. 

In aerospace dynamics the Euler vector became somewhat 
popular with the work of Bortz (1971). He derived, if rather 
obscurely, an equation equivalent to (32). Nazaroff (1979) 
replaced Bortz' analysis by a short and elegant demonstration. 
An alternative approach is due to Pfister (1996). Perhaps the 
earliest recorded statement of an equation equivalent to (32) is 
(Laning, 1949). We have been unable to see this work, it is 
included in Bortz' bibliography. Apparently Laning did not 
think of his development as a contribution original enough to 
warrant publication; his notes were circulated among only a 
limited number of people. 

An excellent review that contains Eq. (32) has recently been 
published by Shuster (1993). In this study (and in most others) 
the focus is on scalar power series. What remains largely undis- 
cussed in the realm of rational kinematics are tensor power 
series formulations like (21) and (22). 

Peres (1979), working in the field of quantum mechanics, 
first derived a formula which is essentially our (21) and which 
therefore may well be named the Peres formula. Never, to the 
best of our knowledge, has an engineer referred to Peres work. 
A more elaborate but equivalent derivation of (21) is to be 
found in Sudarshan (1974), who does not mention previous 
work. This reference seems to be the only book containing 
(21 ). Both Peres and Sudarshan use mathematical concepts that 
are involved and somewhat sophisticated, namely Lie algebra: 
In this article it was shown how ordinary tensor algebra can be 
used to obtain the same results. 

Neither Peres nor Sudarshan derived the inverse KDEs. Also, 
they did not introduce coexponential, Gibbs or Bernoulli series. 
These series provide compact expressions and an efficient 
means for computing some of the fundamental relationships of 
the rotation vector. The resulting formulae are easy to memo- 
rize. These series are certainly useful in their own right. 

Langner ( 1997 ) originated the term coexponential series. The 
term Bernoulli series goes back to Hill (1857) or earlier. A 

somewhat different definition to ours was given by Langner 
(1997). 

6 Conclusion 
In modern mechanics, as in any other scientific research to- 

day, we find two tendencies present: on the one hand, the ten- 
dency which seeks to crystallize the structure inherent in the 
material that is studied and on the other hand, the tendency 
toward computational efficient algorithms. These two tenden- 
cies are, of course, interrelated closely and quite often unexpect- 
edly. 

This paper tries to contribute to the first rather than to the 
second. We aimed at understanding the mathematical structure 
of the kinematic differential equations of the Euler vector ~P. 
This vector definitively is "the stuff" of which rotational kine- 
matics is made. As a conclusion of the literature review at the 
end of the preceding section one may say: Our approach is not 
completely new, but it is new in the way equations are derived 
and results are presented. Most of the more or less known results 
have been scattered in areas as diverse as quantum, space, and 
continuum mechanics and have been collected here for the first 
time, together with a multitude of detailed citations. 

One further point concerning computational efficiency is 
worth noting in conclusion: Transcendental functions such as 
sin (x) or cos (x) are so ingrained in our daily repetition that 
we are easily led to regard them as a "primitive," more "beauti- 
ful," or more natural concept and then to look at other, "unor- 
thodox," transcendental functions like gibi (x) in (29) or Ber 
(x) in (35) as a "defined" and, by consequence, "extrava- 
gant," inattractive and/or computational expensive one. None 
of these functions, however, is anything more than a power 
series. Indeed, for some formulations in kinematics it is artificial 
and unnecessary to introduce sin (x) or cos (x), because Ber 
(x) and coe (x), etc., are sufficient. The development of compu- 
tational efficient algorithms in kinematics therefore calls for the 
development of compilers (or, even better, hardware implemen- 
tations) that without "detour" evaluate these series. 

Our last remark is a couple of questions that seem to be 
nontfivial and unanswered. They arise from the definition of 
/~(Pi ), the kinematic singularity measure. Is there a "natural" 
lower bound /~min > 0 for this measure? If yes, What is the 
three-system of parameters that corresponds to this bound? If 
no, What is (are) the limit process (es) that allow one to obtain 
/3mi, ~ 07 As we feel it (without being able to prove it),/3 = 

might be the lower bound. 
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Thermodynamical Modeling of 
Boundary Layer Flow With 
Suction and Injection 
The variational principle developed by Gyarmati embodying the principles of non- 
equilibrium thermodynamics is employed to investigate the laminar boundary layer 
effect on wedge flows with suction and injection. The velocity Jhnction is assumed as 
a simple third-degree polynomial and the variational principle is formulated. The 
hydrodynamical boundary layer thickness is derived as the Euler-Lagrange equation 
of the variational principle. The velocity profiles and skin J?iction values were com- 
puted for various values of suction and injection parameter and wedge angle parame- 
ter. The comparison of the present solution with an available exact solution estab- 
lishes the fact that the accuracy is remarkable. 

1 Introduction 
The present study deals with the application of the Governing 

Principle of Dissipative Processes to boundary layer flows with 
suction and injection over a wedge whose apex angle is ~r/3. The 
interest in the boundary layer flow with suction and injection is 
due to numerous engineering problems that occur. There are 
several methods which have been developed for the purpose of 
artificially controlling the behavior of the boundary layer. The 
purpose of these methods is to affect the whole flow in a desired 
direction by influencing the structure of the boundary layer. 
Prandtl (1904) described several experiments in which the 
boundary layer was controlled. The problem of boundary layer 
control has become very important in recent times, particularly 
in the field of aerospace engineering. In actual applications it 
is often necessary to prevent separation in order to reduce the 
drag and to attain lift. The boundary layer can be effectively 
controlled by the methods of suction and injection inside the 
boundary layer. 

The effect of suction consists in the removal of decelerated 
fluid particles from the boundary layer before they are given a 
chance to cause separation. The application of suction, first tried 
by Prandtl, was later widely used in the design of aircraft wings. 
By applying suction, considerably greater pressure increases on 
the upper side of the aerofoil are obtained at large angles of 
incidence, and consequently, much larger maximum lift values. 
Recently suction was also applied to reduce the drag. The 
method of boundary layer control by suction, together with the 
prevention of transition on laminar aerofoils, have the greatest 
practical importance. Another method of preventing separation 
is by supplying additional energy to particles of the fluid which 
are being retarded in the boundary layer by injecting fluid from 
the interior of the body with the help of a special blower. A 
new boundary layer, which is again capable of overcoming a 
certain adverse pressure gradient, is allowed to form in the 
region behind the slit. With a suitable arrangement of the slits 
and under favorable conditions separation can be prevented 
completely. Simultaneously, the amount of pressure drag is 
greatly reduced owing to the absence of separation. 
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Schrenk (1941) investigated a large number of different ar- 
rangements of suction slits and their effect on maximum lift. 
Poisson-Quiton (1956) performed experiments to apply blow- 
ing at the trailing edge of an aerofoil in order to increase its 
maximum lift. A detailed investigation into the flow before the 
asymptotic state has been reached was carried out by iglisch 
(1949). A solution for the flat platewith uniform suction in a 
compressible stream was found by Lew (1955); the same prob- 
lem for cylindrical bodies of arbitrary cross section was solved 
by Wuest ( 1955 ). Kay (1948) undertook to verify these theoret- 
ical results for the flat plate at zero incidence with the aid of 
experiments. The assumption that uniform suction begins at the 
leading edge, which formed the basis of Iglisch's theoretical 
calculations, was not satisfied in the test plate. Extensive tables 
for boundary layers on a plate with suction (m = 0) covering 
a wide range of values of the parameter H were calculated by 
Emmons and Leigh (1954). For cases when m ~ 0 there exist 
additional numerical solutions extending over a wide range of 
values of the parameters were investigated by Nickel (1962). 

The classical problem of boundary layer flow with suction 
and injection over a flat plate was investigated by many re- 
searchers both theoretically and experimentally and the above- 
mentioned works are with respect to a flat plate. Relatively 
speaking, considerably less study has been made of the problem 
when the boundary layer flow with suction and injection over 
a wedge. Therefore, the main aim of the present investigation 
is to study the boundary layer effect on wedge flows with suc- 
tion and injection. 

2 Gyarmati's Variational Principle 
Gyarmati (1969, 1970) proposed a variational principle by 

means of which evolution of dissipative transport processes 
can be described in space and time. This principle, based on 
Onsager's linear theory and reciprocal relations (Onsager, 
1931), is called the "Governing Principle of Dissipative Pro- 
cesses." The most general form of the principle is given by 
(Gyarmati, 1969) 

6 f v  [ ~ -  ~j - ~ ] d V =  0 (1) 

for any instant of time under the constraints that the balance 
equations 

p i + V . J i = a i  ( i =  1 , 2 , 3  . . . .  f )  (2) 

are satisfied. Here V denotes the volume of the thermodynamic 
system, and ~r the entropy production per unit time and unit 
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volume, which is expressed as a bilinear function of thermody- 
namic forces and fluxes, 

f 
cr = Y, a i ' x l  -> 0. (3) 

i - I  

This is a definite positive quantity according to the second 
law of thermodynamics, f is the number of independent fluxes 
J~, and thermodynamic forces X~. In the linear Onsager theory, 
the fluxes J~ and the forces X~ are related by the linear constitu- 
tive equations 

f 

Ji = ~ LikXk (4 )  

f 
Xi = Y. RJk  (5) 

i 1 

where L~ and Rik satisfy the relations 
j ' .f 

Z L#,,R,,,.,, = Y, R#,,L,,,k ( i ,  k = 1, 2, 3 . . . .  f )  (6) 
m I m -  I 

and 

Lik = Iei;  Rik = Rk,. (7) 

Llsing Eqs. (4) and (5), cr can be expressed as 
f J 

--- 2 L,kX, Xk --= 2 R,kJ, Jk -> O. (8) 
i,k=l i,k=l 

These two forms of a are called force and flux representation 
of the entropy production. The nonequilibrium local potentials 
(Gyarmati, 1969) 6 and ep, which are equal to hall' of' the 
entropy production, are given by 

J 

• (X, X) ~ (1/2) ~ Li l :X i .X  k _~ O, (9) 
i,k= [ 

f 
• (J, J) ~ (1/2) ~ R j ~ . J k  -> 0. (10) 

i,k [ 

and ,~ are also the local measures of irreversibility. The 
potential character of ~b and • can be obtained from the relations 

f 

J i  = ( O ~ / O X i )  = ~ L i kXk  ( i  = 1, 2,  3 . . . .  f )  ( 1 1 )  
k=l 

f 

X~ = (0~ /0J i )  = Y~Rjk  ( i =  1 ,2 ,3  . . . .  )~') (12) 
k-I  

which are the linear Eqs. (4) and (5). Using the expressions 
of a, ~b, and 'I, in principle ( 1 ), we get 

f v  f f 6 [ Z  J , ' v F , -  (1/2) Z L,yF,.TF, 
i=1 i,k=l 

J 

- (1/2) ~ R ~ k J j . J k ] d V =  0, (13) 
i,k=l 

where the dissipative forces X~ can be generated as the gradients 
of certain F variables which are state parameters and simultane- 
ously internal parameters with respect to forces (Gyarmati, 
1969) 

x,  = v r ,  (14) 

The principle (13) is operative if and only if the balance equa- 
tions are treated as auxiliary conditions for whose variations 
the restrictions 

6 ( / b i  - -  O-i) = - - ~ ( V "  J i )  = - V ' ( a J i )  

( i =  1 ,2 ,3  . . . .  f )  (15) 

are valid. 

3 Formulation of Governing Principle of Dissipative 
Processes 

Prandtl's boundary layer equations for two-dimensional in- 
compressible steady fluid flow are 

(Ou/Ox)  + (OvlOy)  = 0 (16) 

u ( O u / O x )  + v ( O u / O y )  = U ( d U / d x )  + y (O2u /Oy  2) (17) 

where u, v are the velocity components along x and y-directions, 
respectively, and 3' is the kinematic viscosity. The boundary 
conditions of the system are 

y = 0; u = 0, v = vo(x)  

y -.-, 2 ;  u --," U ( x )  (18) 

where Vo(X) is the suction/injection velocity. It is well known 
that in the formulation of Gyarmati's principle the transport 
Eqs. (16) and (17) play the basic role which in this case are 

V . V  = 0 ( V  = iu + j r )  (19) 

p ( V . V ) V  + V. ~' = 0. (20) 

These equations represent the mass and the momentum balance, 
respectively. Here P denotes the pressure tensor and it takes 
the form for the present problem (Gyarmati, 1969) 

0 

P = p~ + F °.', (21) 
0 

where p is the hydrostatic pressure and P~" is the symmetrical 
part of the viscous pressure tensor, whose trace is zero. In the 
study of fluid flow problems, the energy picture of Gyarmati's 
principle is preferable over entropy picture. Therefore, we use 
the energy dissipation T~r instead of entropy production or. The 
energy dissipation for the problem is (Gyarmati, 1969) 

0 

Tcr = -/~*: (V°V) "~ = - P 1 2 ( O u / O y )  -> O, (22) 

where (V°V)" is the symmetrical part of the velocity gradient 
tensor and its trace is zero. In this case it has only one compo- 

nent (V°V) ' = (Ou/Oy) .  The viscous pressure tensor fi~" also 
has only one component P12. The double dots denote the scalar 
product of two tensors. The linear constitutive relation for the 
present case is 

P I 2  = - , t z ( 0 u / 0 y ) .  ( 2 3 )  

The dissipation potentials g, and • in the energy picture are 

Tip =-- ( , u / 2 ) ( O u / O y )  2 > 0 (24) 

Tfp _= (1/2#)P~2 >- 0. (25) 

Using the Eqs. (23), (24), and (25) the energy picture of 
principle ( 1 ) assumes the form 

22 6 [ -P l2 (Ol . t /Oy )  - ( # / 2 ) ( O u / O y )  2 
) 

- ( 1 / 2 # ) P Z z ] d y d x  = 0, (26) 

where L is the characteristic length of the body. Following the 
dual field method (Stark, 1974) we introduce a new velocity 
field u* through the approximate constitutive equation 

Pt2 = - l.z( Ou * / O y ) .  ( 27 ) 

It is assumed that u* satisfies the same boundary conditions as 
u. The momentum balance Eq. (17) and the principle (26) 
become 
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Fig,  1 Hydrodynamica l  boundary  layer th ickness as a funct ion of  H 

u(Ou/Ox) + v(Ou/Oy) = U(dU/dx)  + y(O2u*/Oy 2) (28)  

6 f ~  f f  [ (Ou /Oy ) (Ou * / Oy) -  ( l / 2 ) (Ou/Oy)  2 

- ( l /2) (Ou*/Oy)a]dydx  = 0. (29)  

4 Method of Solution 
We consider the system of two-dimensional ,  laminar  inviscid 

potential flow past an unlimited wedge placed symmetrically in 
a stream with apex at the origin and the center line on the 
positive x-axis. The flow creates along the surface a velocity 
variation like 

U(x) = ax",  (30)  

where a is a constant  and the exponent  m is connected with the 
apex-angle 7r/5 by the relation 

m = /3/(2 - /3). (31)  

Here we confine our analysis to realistic flows only, that is, 
w h e n 0 - < m  < w o r 0 < - / 3  < 2. 

Let us assume that the velocity distribution in the boundary 
layer is as follows: 

u / U ( x )  = 3y/ce - 3y2/a 2 + y3/oe3 (0 --< y -~ ce) 

U = U(X) (y ~ ce) (32)  

which satisfies the compatibil i ty conditions 

y = 0; u = 0 

y = a ; u  = U(x) ,  (Ou/Oy) = O, (02u/Oy a) = 0. (33)  

Here a = a ( x )  is the extent of the hypothetical  hydrodynamical  
boundary layer thickness which is to be determined from the 
present thermodynamic  analysis. 

The transverse velocity component  v is obtained from the 
mass balance Eq. (16)  as 

v /U(x )  = ce ' [3y2/2~ 2 - 2y3/ce 3 + 3y4/4o~ 4] 

- m [3y2 /2~  - y3/c~2 + y4/4ce3]/x + Uo (34)  

where a prime indicates differentiation with respect to x. The 

1.2 
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Fig.  2 Veloci ty  distr ibution for  ,/~ = 0 .2  
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Fig. 3 Velocity distribution for  ,8 = 1.8 

velocity distribution (32) and (34) and the boundary conditions 
(33) are used in the balance Eq. (20) to determine the following 
expression for momentum flux: 

- P 1 2 / #  = ( O u * / O y )  = [U/ol] + U2oF[9/160 - 3y3/2~ 3 

+ 3y4/ol 4 - 9y5/4o~ 5 + 3y6/4~ 6 - 3y7/28o~7]/y  

+ mU2153ol/160 - y + 3y3/2c~ 2 - 3y4/2c~ 3 

+ 3y5/4o~ 4 - y6/4a5  + y7/28oL6]/yx  

+ Uvo[-3/4 + 3y/oz - 3 y 2 / ~  2 -I- y3/oz3] /y  (35) 

where u* is the dual field velocity. Using the Eqs. (32) and 
(35) in the principle (29) and integrating with respect to y, we 
get 

6 [U3owl ' (O.O34821428)yx  ~ -  U 2 ( O . 4 ) ' ) / 2 X  2 

+ mU3olZ(0.124107142)yx- U4o~zoF2(0.000812449)x 2 

- m2U4c~4(0.009715542) - mU4a3oF(O.OO5284936)x 

- U~o!vo(O.25)yx 2 - U2o12vz(o.o401785)x 2 

+ mU3o~3v0(0.0393877)x 

+ U3o12oFvo(O.OlO4095)x2]dx = 0. (36) 

Let us introduce the dimensionless boundary layer thickness ~* 
by the relation 

o~ = o ~ @ y x / U  (37) 

in the variational principle (36). If the concise formulation of 
the variational principle (36) is given with the help of Lagran- 
gian density L as 

~5 Ldx = 0, (38) 

the Euler-Lagrange equation of the principle (38) turns out to 
be 

OL/Ool* = 0 (or) (39) 

o~'4[m2(0.021828558) + m(0.006708731) + 0.000609336] 

- oe* 3H[m(0.0683659) + 0.0104095 ] 

Journal of Applied Mechanics 

+ o z * 2 [ H 2 ( 0 . 0 4 0 1 7 8 5 )  - m(0.106696428) 

- 0.017410714] - 0.4 = 0, (40) 

where H the dimensionless injection speed is given by 
r 

H = voVRx/U. (41) 

Here R~ denotes the Reynolds number ( U x ) / y .  Suction and 
injection are represented by H < 0 and H > 0, respectively. 

Equation (40) is a simple algebraic equation in terms of 
the boundary layer thickness whose coefficients depend on the 
injection speed H and the wedge parameter m. The algebraic 
Eq. (40) is solved easily for the given values of m and H, and 
the corresponding hydrodynamical boundary layer thickness c~* 
is obtained as the only positive root. In order to study the effects 
of suction and injection on local shear stress, we calculate its 
dimensionless value 

7-* = (Ou*/Oy)y=o. (42) 

It is noteworthy that the nonlinear partial differential Eqs. 
(16) and (17) are reduced to simple algebraic Eq. (40), which 
is of much practical use to any practicing engineer. 

5 Discussion of  Results 

The dimensionless boundary layer thickness c~* which is the 
solution of (40) is graphically presented in Fig. 1. The boundary 
layer thickness o~* is shown as a function of injection parameter 
H for the values of wedge parameter/3 = 0.2, 0.5, 0.8, 1.0, 1.2, 
1.5, 1.6, and 1.8. From this figure, we observe that the boundary 
layer thickness increases with H and the increase is very rapid 
when/3 is small. 

Figures 2 and 3 represent velocity distribution inside the 
boundary layer for various values of H. The figures correspond 
to the values of the wedge parameter/3 = 0.2, and 1.8. Since 
we confined our analysis to realistic flows only, we can deter- 
mine the velocity distributions inside the boundary layer for 
various values of H ranging from the wedge parameter/3 -> 0 
and/3 < 2. It can be easily observed from each figure that the 
dimensionless velocity increases from 0 to 1, more rapidly in 
the case of suction (H < 0). 

It is customary that when a new mathematical method is 
applied to a problem, the obtained results are compared with 
the available exact solution in order to determine the error in- 
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Fig. 4 Skin friction as a function of the wedge parameter 

volved in the results. The main result of engineering interest is 
the local values of shear stress. Accordingly, we compute the 
skin friction values and Fig. 4 displays skin friction values as 
a function of the wedge parameter/3. It is demonstrated that 
the skin friction values are decreasing function of H. The inten- 
tion of this figure is to compare the present solution with the 
exact solution of Nickel (1962). The agreement of the results 
is excellent and thus we find our present variational method 
produces results with a very high order of accuracy. 

The boundary layer separation by plotting the separation val- 
ues of H against/3 is exhibited in Fig. 5. By a separation value 

16.0 

12.0 

8.0 

4.0 

0 
0 2.0 

I I I I 
0.4 0.8 1,2 1.6 

2.0 

Fig. 5 Separation values of H versus ,8 

of H we mean the H value which causes separation. We observe 
from the figure that the increase in the value of the wedge 
parameter/3 delays the separation. 

One can note that this variational procedure yields results 
which are analytical and almost exact. The great advantage of 
this analysis is that the amount of calculation is considerably 
less. Thus we observe from the present investigation that the 
comparably easier variational procedure for solving the partial 
differential equations governing the present system yields re- 
sults with remarkable accuracy. 
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A Note on the Effective Lam(  
Constants of Polycrystalline 
Aggregates of Cubic Crystals 

V. A.  L u b a r d a  t 

B is well known that the Voigt and Reuss estimates o f  the 
effective shear modulus o f  a polycrystall ine aggregate o f  cubic 
crystals are, respectively, the upper and lower bounds Jbr this 
constant (#~ <- iz <_ #v). R is poin ted  out  in this note that the 
opposite is true f o r  the Lame constant X ( X v ~ k <- X R ). 

1 Introduct ion 

According to the Voigt (1889) assumption, when a polycrys- 
talline aggregate is subjected to the overall uniform strain, the 
individual crystals are all in the same state of  applied strain. 
From this assumption it follows that the effective elastic moduli 
of an isotropic aggregate are directional averages of the corre- 
sponding moduli of individual crystals. Thus, the effective 
Lam6 and bulk moduli of a polycrystalline aggregate of cubic 
crystals are 

1 
~ V  : .~ (Cll  .1_ 4Cl2 2C44), I zv l - -  = g ( e l l  - -  C l 2  + 3C44), 

I 
' K v = .g ( e l l  + 2 C , 2 ) ,  ( 1 )  

where superscript V designates the Voigt assumption. The con- 
stants cu,  c12, and c44 are the elastic moduli of individual crys- 
tals. 

According to the Reuss (1929) assumption, when a polycrys- 
talline aggregate is subjected to overall uniform stress, the indi- 
vidual crystals are all in the same state of applied stress. From 
this assumption it follows that the effective elastic compliances 
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of an isotropic aggregate are directional averages of the corre- 
sponding compliances of  individual crystals. Expressing the 
result in terms of elastic moduli, this gives 

XR = (ell -- C12)(Ctl + 2C12) - 2c44(c11 - 3cl2) 

3(CI1 - -  C l 2 )  - ~  4C44 

#R = 5C44(Cll -- C12) 

3(cl l  - cl2) + 4c44' (2) 

and K R = (c~ + 2q2)13. Evidently, K v = ~c k, since cubic 
crystals under hydrostatic state of stress behave as isotropic 
materials. Comparing Eqs. (1) and (2) ,  we further have 

2 (ell - c 1 2  - 2C44) 2 kv=  X R 
5 3 ( C l l  -- C12 ) "q- 4C44 ' 

3 ( C l l -  cl~ - 2c44) 2 
[zV = # e  + 5 3 ( C l l  -- C12 ) @ 4C44 ' (3) 

Since fi'om the stability conditions for a single crystal c~ - c~2 
> 0 and c44 > 0, from Eq. (3) it follows that 

Xv< XR, # v > f f .  (4) 

2 Bounds  

Hill (1952) has shown that the strain energy density in a 
polycrystalline aggregate with the true effective moduli is not 
greater than the corresponding energy in the aggregate with the 
Voigt estimates of  the elastic moduli. Likewise, the complemen- 
tary energy in a polycrystalline aggregate with the true effective 
compliances is not greater than the corresponding energy in the 
aggregate with the Reuss estimates of  the elastic compliances. 
From this it follows that the true shear and bulk moduli are 
related to their Voigt and Reuss estimates by 

# R < # < # v ,  K k =  K = K  v. (5) 

The other well-known consequences are that the effective 
Young's  modulus and Poisson's ratio are bounded by 

E R <-- E<-- E v, u v<- u <-- u R. (6) 

The bounds on the Lam6 constant X are easily identified. 
Indeed, 

2 V 2 2 K - ~ #  - -<X=K- -~ / .Z_<K- -5#  R, (7) 

and since t¢ = K v = K R, we obtain 
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X v ~- X -< X R. (8) 

Thus, the upper bound for the Lain6 constant K is the Reuss 
estimate of this constant, while the lower bound for this constant 
is given by its Voigt estimate. 

This is the message of this brief note. It is brought to the 
attention of the reader, because a statement appears in the litera- 
ture that all effective elastic moduli are bounded from above 
by their Voigt estimates and from below by their Reuss esti- 
mates (e.g., Barsch, 1968, p. 3782; Mura, 1987, Eq. (45.19.13) 
on p. 428). 
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Natural Frequencies and Normal 
Modes for Externally Damped 
Spinning Timoshenko Beams With 
General Boundary Conditions 

J. W. ZU 1'3 and J. Melanson 2'3 

Vibration analysis of externally damped spinning Timoshenko 
beams with general boundary conditions is performed analyti- 
cally. Exact solutions for natural frequencies and normal modes 
for the six classical boundary conditions are derived for the 
first time. In the numerical simulations, the trend between the 
complex frequencies and the damping coefficient is investigated, 
and complex mode shapes are presented in three-dimensional 
space. 

1 Introduction 
Most research in analytical modeling of Timoshenko beams 

spinning along the longitudinal axis that has been conducted is 
limited to undamped vibrations. Zu and Hart (1992) developed 
analytical solutions for the natural frequencies and normal 
modes for a spinning Timoshenko beam with six different 
boundary conditions. Lee (1995) formulated the equations of 
motion for a simply supported beam subjected to axial forces 
and moving loads by Hamilton's principle. Argento (1995) 
investigated the response and resonance of simply supported 
and clamped-clamped spinning beams subjected to moving 
loads using Galerkin's method. Tan and Kuang (1995) obtain 
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closed-form solutions for both Rayleigh and Timoshenko beams 
by means of a distributed transfer function and a generalized 
displacement formulation for stepped beams. 

For damped vibration of Timoshenko beams, Singh and Ab- 
delnaser (1993) presented a general modal solution to a station- 
ary Timoshenko beam with external damping. They include 
both external transverse and rotary viscous damping as well as 
viscoelastic damping. Extensive research on externally damped 
spinning Timoshenko beams is lacking at the present time. One 
of the very few papers on external damping is by Medgyesi 
( 1991 ), in which the external damping was studied in the case 
of a Jeffcott rotor. 

The objective of this paper is to develop analytical solutions 
for the complex eigenvalues and complex normal modes of an 
externally damped Timoshenko beam with general boundary 
conditions. This is a continuation of the work done by Zu and 
Han (1992) in which undamped natural frequencies and normal 
modes were solved analytically. 

2 Equations of Motion 
The equations of motion based on an inertial frame oxyz for a 

spinning uniform Timoshenko beam are based on the equations 
presented by Han and Zu (1992) with the inclusion of the 
external viscous damping. The equations of motion are 

1 =o (1) 

02~ i ~2Jz Oth E 02qJ KAG [ 0~ ] 
at 2 pl Ot pl 2 0¢ 2 + ~ l~0 - = 0 (2) 

where p is the mass density; A is the cross-sectional area; I is 
the transverse moment of inertia of an axisymmetric cross sec- 
tion; Jz is the polar moment of inertia; c is the viscous damping 
coefficient; and E, G, and K are Young's modulus, shear modu- 
lus, and shear coefficient, respectively. ¢ = z/l is the nondimen- 
sional variable, and u = ux + iuy, ~ = tPx + it~y are the complex 
transverse deflections the corresponding bending angles. Note 
that only transverse damping is included while rotary damping 
is ignored since the effect of rotary damping is much smaller 
than the transverse damping. 

Assume that the solutions to Eqs. (1) and (2) are 

u = Wu(¢)e at 

= W,G)e ~'. (3) 

Here W.(¢) and Wo(¢) are complex normal modes and h is the 
complex eigenvalue and they are expressed by 

Wu(¢) = Wu,(¢) + iW,,(~) 

W~,(~) = W~R(¢) + iW~(¢) (4) 

X = h R + i k z .  (5) 

Thus the substitution of Eq. (3) into Eqs. ( 1 ) and (2) becomes 

3 )  ,,G ,,0 -X X+ c W . ( ¢ ) = - ~ - W ~ ( ¢ ) - - - W ~ ( ¢ )  (6) 
pl 2 

I X z -- i f~JzX 
pl 

- -  + Kp~G]w~ o(~) - - ~ -  W 2 

u:A G 
= W ' ( ¢ ) .  (7) 

pll 

The solutions to Eqs. (6) and (7) can be derived as follows: 
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X v ~- X -< X R. (8) 

Thus, the upper bound for the Lain6 constant K is the Reuss 
estimate of this constant, while the lower bound for this constant 
is given by its Voigt estimate. 

This is the message of this brief note. It is brought to the 
attention of the reader, because a statement appears in the litera- 
ture that all effective elastic moduli are bounded from above 
by their Voigt estimates and from below by their Reuss esti- 
mates (e.g., Barsch, 1968, p. 3782; Mura, 1987, Eq. (45.19.13) 
on p. 428). 
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Natural Frequencies and Normal 
Modes for Externally Damped 
Spinning Timoshenko Beams With 
General Boundary Conditions 

J. W. ZU 1'3 and J. Melanson 2'3 

Vibration analysis of externally damped spinning Timoshenko 
beams with general boundary conditions is performed analyti- 
cally. Exact solutions for natural frequencies and normal modes 
for the six classical boundary conditions are derived for the 
first time. In the numerical simulations, the trend between the 
complex frequencies and the damping coefficient is investigated, 
and complex mode shapes are presented in three-dimensional 
space. 

1 Introduction 
Most research in analytical modeling of Timoshenko beams 

spinning along the longitudinal axis that has been conducted is 
limited to undamped vibrations. Zu and Hart (1992) developed 
analytical solutions for the natural frequencies and normal 
modes for a spinning Timoshenko beam with six different 
boundary conditions. Lee (1995) formulated the equations of 
motion for a simply supported beam subjected to axial forces 
and moving loads by Hamilton's principle. Argento (1995) 
investigated the response and resonance of simply supported 
and clamped-clamped spinning beams subjected to moving 
loads using Galerkin's method. Tan and Kuang (1995) obtain 
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closed-form solutions for both Rayleigh and Timoshenko beams 
by means of a distributed transfer function and a generalized 
displacement formulation for stepped beams. 

For damped vibration of Timoshenko beams, Singh and Ab- 
delnaser (1993) presented a general modal solution to a station- 
ary Timoshenko beam with external damping. They include 
both external transverse and rotary viscous damping as well as 
viscoelastic damping. Extensive research on externally damped 
spinning Timoshenko beams is lacking at the present time. One 
of the very few papers on external damping is by Medgyesi 
( 1991 ), in which the external damping was studied in the case 
of a Jeffcott rotor. 

The objective of this paper is to develop analytical solutions 
for the complex eigenvalues and complex normal modes of an 
externally damped Timoshenko beam with general boundary 
conditions. This is a continuation of the work done by Zu and 
Han (1992) in which undamped natural frequencies and normal 
modes were solved analytically. 

2 Equations of Motion 
The equations of motion based on an inertial frame oxyz for a 

spinning uniform Timoshenko beam are based on the equations 
presented by Han and Zu (1992) with the inclusion of the 
external viscous damping. The equations of motion are 

1 =o (1) 

02~ i ~2Jz Oth E 02qJ KAG [ 0~ ] 
at 2 pl Ot pl 2 0¢ 2 + ~ l~0 - = 0 (2) 

where p is the mass density; A is the cross-sectional area; I is 
the transverse moment of inertia of an axisymmetric cross sec- 
tion; Jz is the polar moment of inertia; c is the viscous damping 
coefficient; and E, G, and K are Young's modulus, shear modu- 
lus, and shear coefficient, respectively. ¢ = z/l is the nondimen- 
sional variable, and u = ux + iuy, ~ = tPx + it~y are the complex 
transverse deflections the corresponding bending angles. Note 
that only transverse damping is included while rotary damping 
is ignored since the effect of rotary damping is much smaller 
than the transverse damping. 

Assume that the solutions to Eqs. (1) and (2) are 

u = Wu(¢)e at 

= W,G)e ~'. (3) 

Here W.(¢) and Wo(¢) are complex normal modes and h is the 
complex eigenvalue and they are expressed by 

Wu(¢) = Wu,(¢) + iW,,(~) 

W~,(~) = W~R(¢) + iW~(¢) (4) 

X = h R + i k z .  (5) 

Thus the substitution of Eq. (3) into Eqs. ( 1 ) and (2) becomes 

3 )  ,,G ,,0 -X X+ c W . ( ¢ ) = - ~ - W ~ ( ¢ ) - - - W ~ ( ¢ )  (6) 
pl 2 

I X z -- i f~JzX 
pl 

- -  + Kp~G]w~ o(~) - - ~ -  W 2 

u:A G 
= W ' ( ¢ ) .  (7) 

pll 

The solutions to Eqs. (6) and (7) can be derived as follows: 
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Table 1 Comparison of complex eigenvalues varying with viscous damping 

Damping 
~s/n~ 

0 
I0O000 
200000 
300000 
400000 
500000 
600000 
700000 
800000 
900000 

1000000 

Hinged-Hinged 
Real Imaginary 

CompLex Eigenvalues 
Clamped-Clamped 

Real[ Imaginary 
0 4827 

-227 4822 
-430 4806 
-683 4780 
-910 4743 

-1138 4694 
-1366 4634 
-1594 4562 
-1823 4478 
-2051 4381 
-2280 4269 

0 2445 
-233 2435 
-467 2402 
-701 2348 
-936 2269 

-1173 2164 
-1413 2028 
-1658 1853 
-1913 1627 
-2190 1326 
-2551 890 

Hinged-Free 
Real I Imaginary 

0 3874 
-233 3868 
-430 3849 
-701 3816 
-935 3770 

-1171 3710 
-1407 3635 
-1646 3545 
-1886 3437 
-2129 3311 
-2377 3163 

Damping 
(Ns/m) Clamp 

C Real 
0 

100000 
200000 
300000 
400000 
500000 
600000 
700000 
800000 
900000 

1000000 

ted-Free 
] Imaginary 

0 907 
-240 877 
-485 779 
-747 581 

-1226 216 
-1857 146 
-2390 131 
-2889 124 
-3373 120~ 
-3848 l i t  
-4316 115i 

Complex Eigenvalues 
Free-Free Clampet 
Real[ Imaginary 

0 5595 
-228 5590 
-456 5578 
-684 5557 
-913 5527 

-1142 5489 
-1372 5442 
-1602 5386 
-1833 5320i 
-2065; 5245 
-2299 5159 -2318 i 

lamped-Hinged 
Real Imaginary 

0 3570 
-230 3563 
-430 3541 
-689 3505 
-919 3454 

-1150 3386 
-1381 3302 
-1613 3200 
-1846 3078 
-2081 2933 

2762 

BRIEF NOTES 

where 

W,(~) = Ale  ~,; + Aae "-~ + A3e~"3; + A4 es4~ 

W4,(~) = B~e ~',~ + B2e"2~ + B3e~'~ ~ + B4eh~ 

_L F 
k2 = / (KG 

pl 2 L 

• -k7  + (k  2 - 4klk~ 
s1,2,3, 4 = ~ 

2k~ 

~:GE 
k~ - p214 

+ E)X2 + . - i  p1 / .1 

(8) 

(9) 

(10) 

c ~2J~]x ~ 
k3 : - X 4 +  - p-~ + i - ~ - /  " 

- - -  i ~ J z C  ~ )k 2 -- ~:Gc e:AG + - -  X. (11) 
+ p l  p 2 A l ]  p2I  

A i - A 4  and B i - B 4  in Eqs. (8) and (9) are complex integration 
constants. Since only half of the integration constants, A i - A 4  
or B1-B4, are independent, a relationship between Ai and Bi 
can be found by substituting Eqs. (8) and (9) into Eq. (6) or 
Eq. (7).  

3 D e t e r m i n a t i o n  o f  C o m p l e x  E i g e n v a l u e s  and  C o m -  

p l e x  N o r m a l  M o d e s  
By applying boundary conditions (Zu and Han, 1992) to Eqs. 

(8) and (9) ,  a set of four simultaneous, homogeneous equations 
in terms o fAl ,  A2, A3, and A4 will be generated. For a nontrivial 
solution, the determinant of  the Ai coefficient matrix is set to 
equal zero. The resulting characteristic equation can be split 
into real and imaginary components. Consequently, two r e a l  
nonlinear equations in terms of two real unknowns, kR and Xt, 
are obtained: 

AR = fl (he, hz) (12) 

A, = f2(kR, X,). (13) 

Due to the high nonlinearity and the complexity of Eqs. (12) 
and (13),  obtaining explicit expressions for ft and J2 is too 
cumbersome and virtually impossible, even with the aid of 
mathematical symbolic packages. Therefore, a numerical 
scheme based on a standard root solver is adopted to solve the 
eigenvalues without explicit expressions for fl  and 3'). Initial 
guesses for hR and kt are given and the values for Ak and Ai 
are calculated to check whether they are equal to zero. This 
step is repeated until both values of AH and At converge to 
within a tolerance value. 

4 N u m e r i c a l  S i m u l a t i o n s  

Numerical simulations of an externally damped, spinning Ti- 
moshenko beam for each of the six different boundary condi- 
tions (Zu and Han, 1992) are presented here. The same data 
and the same parameters ~ = 2.5 and/3 = 0.15 are used. 

Table 1 shows the variation of the first complex frequency 
with damping coefficient c in each boundary condition. Only 
forward precession frequencies are presented. For c = 0, the 
results agree completely with the undamped natural frequencies 
obtained in Zu and Hart (1992).  It is shown that with the 
increase of damping, the natural fi'equency, which is the imagi- 
nary component of the complex frequency, is decreasing. As 
well, the real component, which reflects the rate of  decay of 
the vibration, increases in value. Note in every case, except 
for clamped-free, the real component decrease linearly. This is 
consistent with single-degree-of-freedom systems with damp- 
ing. 

5 C o n c l u s i o n s  

A flee-vibration analysis of an externally damped spinning 
Timoshenko beam with general boundary conditions is per- 
formed analytically for the first time. It is found from numerical 
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simulations that the real component of the complex natural 
frequency increases in value linearly with damping, where the 
imaginary component decrease nonlinearly. 
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Pseudo-Linear Vibro-Impact System 
With a Secondary Structure: 
Response to a White-Noise Excitation 

M. F. D i m e n t b e r g  1 and  H. G. H a e n i s c h  1,2 

Introduction 
Many structural systems can be modeled for a dynamic analy- 

sis by a primary mass, suspended on nonlinear spring(s), with 
a linear secondary structure attached to this mass. A two-step 
procedure for response prediction of such a structure to an 
excitation, applied to the primary mass, may he based on a so- 
called "cascade" approximation, which actually implies de- 
composition of the original nonlinear multi-degree-of-freedom 
system into a nonlinear single-degree-of-freedom one and a 
linear multi-degree-of-freedom one. The advantage of the pro- 
cedure is that it does not need to rely on any assumption(s) of 
small nonlinearity. 

Step 1. Response prediction for a single-degree-of-freedom 
nonlinear system, as obtained from the original one by assuming 
a rigid attachment of the secondary structure to the primary 
one. 

Step 2. Response of the primary mass, as predicted at the 
Step 1, is considered as a base excitation for the (linear) second- 
ary strructure, with subsequent predictions being straightforward, 
provided that all necessary information of the base excitation 
is available. 

The approximation should certainly be adequate for the cases, 
where secondary mass is small compared with the primary one. 
This sufficient condition may be relaxed sometimes, particularly 
if suspension springs of the secondary structure are much stiffer 
than those of the primary one--such as in case of a moored 
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body with (small) primary suspension stiffness being solely 
due to buoyancy. This topic, however, will not be considered 
here. 

The above procedure seems to be straightforward for the case 
of a sinusoidal excitation of the primary mass. However, in case 
of a random excitation it faces an intrinsic difficulty due to 
necessity for predicting the power spectral density of the pri- 
mary mass response at the Step 1. The latter problem is very 
difficult, even for a single-degree-of-freedom system under a 
white-noise excitation. Thus, any approximate analytical 
method (e.g., based on moment closure), as well as a direct 
numerical (Monte-Carlo) simulation study, may benefit from 
some benchmark exact solution that can be used to check accu- 
racy of the analytical or numerical results. 

Such a solution is actually available for the case, where nonlin- 
earity in the suspension is due to a rigid barrier at the system's 
static equilibrium position, with perfectly elastic rebound of the 
mass after impact. For the case of a white-noise excitation of such 
a "pseudo-linear" system a closed-form exact solution for the 
autocorrelation function of the response has been obtained by 
Dimentberg et al. ( 1995 ). The corresponding power spectral den- 
sity of the response acceleration is studied in this brief note, both 
analytically and numerically. It is shown that this power spectral 
density has peaks at even integer multiples (harmonics) of the 
natural frequency of the system without barrier, the heights of the 
peaks decreasing with the number of the harmonic. Furthermore, 
asymptotic evaluation of the integral expression for the power 
spectral density at high frequencies indicates that the power spec- 
tral density of the response acceleration approaches a constant 
value and provides an explicit formula for this limiting level 
within the "inertia-dominated range." This formula illustrates 
strong influence of the impacts for lightly damped systems. The 
results are used for predicting mean-square response of the sec- 
ondary mass to a base excitation from the primary one. While 
these results seem to be of importance mostly as benchmark ones, 
for developing and/or testing various procedures for approximate 
analysis and/or numerical simulation, they also may be of a direct 
use for a moored body with a weightless inextensible mooring 
line, which doesn't have any slack or preload at its static equilib- 
rium position. 

Autocorrelation Function and Power Spectral Density 
of the Primary Mass Response 

A single-degree-of-freedom system is considered, which has 
a rigid barrier at its static equilibrium position y = 0. The 
system's motion between impacts is governed by equation 

y + 2ay + f~2y = ~(t), y > 0 (1) 

where ¢(t) is a stationary zero-mean Gaussian white-noise with 
intensity D. The condition for perfectly elastic impact at y = 0 
can be written as 

y+ = - y _ ,  y+ = y ( t ,  +_ 0),  y(t,) = 0 (2)  

where subscripts minus and plus are used for values of the 
velocity immediately before and after the impact instant t , .  
Dimentberg et al. (1995) obtained for this system the following 
exact solution for the autocorrelation function Kyv(T) of the 
stationary response y( t )  (the solution is based on a certain 
piecewise-linear transformation of state variables, as proposed 
originally by Zhuravlev (1976), which makes the new state 
variables continuous at the impact instants, thereby transferring 
all nonlinearity to the transformation and reducing the nonlinear 
system (1), (2) to a linear one) 

Kyy(7-)  = (2cr2/Tr)[R(~ -) sin-t R(~ -) + ~/1 - R2(T)] 

R(~') = e x p ( - a l T [ ) '  [cos cv,l~- ÷ (c~/w,t) sin ~d l~ l ] ,  

wcl = ~ -  c~ 2, ~2 = D/4cd~2. (3) 
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simulations that the real component of the complex natural 
frequency increases in value linearly with damping, where the 
imaginary component decrease nonlinearly. 
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Introduction 
Many structural systems can be modeled for a dynamic analy- 

sis by a primary mass, suspended on nonlinear spring(s), with 
a linear secondary structure attached to this mass. A two-step 
procedure for response prediction of such a structure to an 
excitation, applied to the primary mass, may he based on a so- 
called "cascade" approximation, which actually implies de- 
composition of the original nonlinear multi-degree-of-freedom 
system into a nonlinear single-degree-of-freedom one and a 
linear multi-degree-of-freedom one. The advantage of the pro- 
cedure is that it does not need to rely on any assumption(s) of 
small nonlinearity. 

Step 1. Response prediction for a single-degree-of-freedom 
nonlinear system, as obtained from the original one by assuming 
a rigid attachment of the secondary structure to the primary 
one. 

Step 2. Response of the primary mass, as predicted at the 
Step 1, is considered as a base excitation for the (linear) second- 
ary strructure, with subsequent predictions being straightforward, 
provided that all necessary information of the base excitation 
is available. 

The approximation should certainly be adequate for the cases, 
where secondary mass is small compared with the primary one. 
This sufficient condition may be relaxed sometimes, particularly 
if suspension springs of the secondary structure are much stiffer 
than those of the primary one--such as in case of a moored 
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body with (small) primary suspension stiffness being solely 
due to buoyancy. This topic, however, will not be considered 
here. 

The above procedure seems to be straightforward for the case 
of a sinusoidal excitation of the primary mass. However, in case 
of a random excitation it faces an intrinsic difficulty due to 
necessity for predicting the power spectral density of the pri- 
mary mass response at the Step 1. The latter problem is very 
difficult, even for a single-degree-of-freedom system under a 
white-noise excitation. Thus, any approximate analytical 
method (e.g., based on moment closure), as well as a direct 
numerical (Monte-Carlo) simulation study, may benefit from 
some benchmark exact solution that can be used to check accu- 
racy of the analytical or numerical results. 

Such a solution is actually available for the case, where nonlin- 
earity in the suspension is due to a rigid barrier at the system's 
static equilibrium position, with perfectly elastic rebound of the 
mass after impact. For the case of a white-noise excitation of such 
a "pseudo-linear" system a closed-form exact solution for the 
autocorrelation function of the response has been obtained by 
Dimentberg et al. ( 1995 ). The corresponding power spectral den- 
sity of the response acceleration is studied in this brief note, both 
analytically and numerically. It is shown that this power spectral 
density has peaks at even integer multiples (harmonics) of the 
natural frequency of the system without barrier, the heights of the 
peaks decreasing with the number of the harmonic. Furthermore, 
asymptotic evaluation of the integral expression for the power 
spectral density at high frequencies indicates that the power spec- 
tral density of the response acceleration approaches a constant 
value and provides an explicit formula for this limiting level 
within the "inertia-dominated range." This formula illustrates 
strong influence of the impacts for lightly damped systems. The 
results are used for predicting mean-square response of the sec- 
ondary mass to a base excitation from the primary one. While 
these results seem to be of importance mostly as benchmark ones, 
for developing and/or testing various procedures for approximate 
analysis and/or numerical simulation, they also may be of a direct 
use for a moored body with a weightless inextensible mooring 
line, which doesn't have any slack or preload at its static equilib- 
rium position. 

Autocorrelation Function and Power Spectral Density 
of the Primary Mass Response 

A single-degree-of-freedom system is considered, which has 
a rigid barrier at its static equilibrium position y = 0. The 
system's motion between impacts is governed by equation 

y + 2ay + f~2y = ~(t), y > 0 (1) 

where ¢(t) is a stationary zero-mean Gaussian white-noise with 
intensity D. The condition for perfectly elastic impact at y = 0 
can be written as 

y+ = - y _ ,  y+ = y ( t ,  +_ 0),  y(t,) = 0 (2)  

where subscripts minus and plus are used for values of the 
velocity immediately before and after the impact instant t , .  
Dimentberg et al. (1995) obtained for this system the following 
exact solution for the autocorrelation function Kyv(T) of the 
stationary response y( t )  (the solution is based on a certain 
piecewise-linear transformation of state variables, as proposed 
originally by Zhuravlev (1976), which makes the new state 
variables continuous at the impact instants, thereby transferring 
all nonlinearity to the transformation and reducing the nonlinear 
system (1), (2) to a linear one) 

Kyy(7-)  = (2cr2/Tr)[R(~ -) sin-t R(~ -) + ~/1 - R2(T)] 

R(~') = e x p ( - a l T [ ) '  [cos cv,l~- ÷ (c~/w,t) sin ~d l~ l ] ,  

wcl = ~ -  c~ 2, ~2 = D/4cd~2. (3) 

772 / Vol. 65, SEPTEMBER 1998 Transactions of the ASME Copyright © 1998 by ASME

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



10 

0.005 

0.01 

0.05 t 
.I ,o,g /! 

m , :  . • , '  f t . .  . 

0.1 /![,ill' ..,~.X.\ . / . . . i F  .,... ..... 
/ ,! ',, . i  ',,..." 

I i  ii '... '-',." ""-'"" //'}: ........ / 

i ii 
0.01 _ _  

0 2 4 6 8 10 

Non-dimensional Frequency 
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The power spectral density of the zero-mean part of the re- 
sponse y(t) can be obtained now as a Fourier transform 

,£ 
@,,y(CO) = 27 [Kss(T) - KyY(°°)]e-i~dT 

1 f ~  [Kvy(r ) K~.~,(oo)] cos cordr. 
71" 

(4 )  

Expansion of expression (3) for Kyy(r) in a power series in 
R2(7"), which converges for nonzero time shifts (where R < 
1), and thus for finite frequencies for power spectral density 
shows that the response power spectral density has peaks at 
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even harmonics of the system's natural frequency without bar- 
rier. The peaks are attenuated with increasing harmonic number, 
the attenuation rate increasing with damping ratio oe/f2. These 
conclusions are clearly supported by the numerical integration 
results as presented in Fig. 1 for several values of the damping 
ratio. 
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BRIEF NOTES 

zag, 1978). As long as each integration brings an additional 
factor co into denominator, the first nonzero term in the sequence 
will be a leading one in the expansion in the inverse powers of 
frequency. This leading term is found to be 

= (~  /rrco )Kyy(0) + o(co 4) (5) (I) ,3,(CO ) 3 4 m 

so that using formula (3) yields 

lim~_,~bs<,,(co ) = l im~o~co4~yy(CO) = (DI27r)Q, 

Q = 1 + 2~Urrce. (6) 

The first co-factor in formula (4) for the limiting value of 
the response acceleration power spectral density is seert to be 
just a power spectral density of the original white-noise excita- 
tion in the Eq. (1). Therefore, it corresponds to the response 
acceleration power spectral density of the (linear) system with- 
out a barrier in the "inertia-dominated" high-frequency range. 
The factor Q may be called an "impact magnification factor," 
as long as it appears solely due to impacts. The expression (6) 
shows that the influence of the impacts persists to indefinitely 
high frequencies, and relative contribution of the impacts, as 
governed by the second term in the expression for Q, may 
be quite large, particularly for lightly damped systems. This 
dominating contribution of the impacts may form a basis for 
developing a procedure for approximate analysis for the cases, 
which are not amenable to exact solution. 

Mean-Square Response of a Secondary Structure 
Consider now the response y(t)  as a base excitation for the 

(linear) secondary structure according to the "cascade" ap- 
proximation. For simplicity, the case of a single secondary re- 
sponse variable z(t)  will be considered, with the corresponding 
transfer function from base acceleration to this variable being 
denoted as H~.(i~v). Then the mean-square response of the sec- 
ondary structure can be represented as 

<z2> = ~ = f ~  IH~(~)lco4~yy(co)dco. (7) 

Specific results of numerical integration are presented below 
for the case, where z(t)  is a relative displacement of a secondary 
mass-spring-dashpot system with natural frequency and damp- 
ing ratio [2,, C~s/Q. respectively, so that 

H~(ico) = ( - c o . o  2 -1- 2ic0oe.,. + [2~) -I (8) 

It can be seen from the Eqs. (7) and (8), that if f2,. is very 
large compared with f~ and lies far enough within the inertia- 
dominated frequency range--one with a constant power spec- 
tral density of the base acceleration--then the rms relative dis- 
placement of the secondary mass should approach the limiting 
value efT= = (DI4oz,f~)Q = o'2(ot/ols)(~-~/~-~s)2Q. The conver- 

• gence to this limit is illustrated by the results of numerical 
integration according to Eqs. (4), (7), and (8), as presented 
in Figs. 2, 3 and 4, for values of the secondary system' s damping 
ratio cq/[~., = 0.01; 0.05 and 0.1, respectively. Each figure con- 
tain a set of curves of crz/~rz~ versus secondary/primary natural 
frequency ratio f~/f~ for several selected values of the primary 
system's damping ratio oe/~2. Each curve approaches, as ex- 
pected, the unit level, which corresponds to the predicted inertia- 
dominated limit, accounting for the impacts via factor Q ac- 
cording to the formula (6). All curves exhibit resonant peaks 
at even integer values of the natural frequency ratio. Decreasing 
primary and/or secondary system's damping ratio is seen to 
make the peaks .more sharp and less rapidly attenuated with 
increasing natural frequency ratio. 

Finally, a comment can be made on accounting for possible 
impact losses, as described by a restitution factor r < 1, intro- 
duced into an RHS of the impact condition (2). Asymptotic 
analysis by stochastic averaging shows (Dimentberg, 1988) that 

it can be done for small values of 1 - r by using an equivalent 
apparent viscous damping ratio ce/f2 + (1 - r)/rr (this can be 
also shown easily by considering free decaying vibrations with 
impacts and enforcing the condition of same rebound velocities 
at each two consecutive cycles as one for equivalence between 
systems with impact damping and with viscous one). Of course 
the results should be regarded then as approximate ones, their 
accuracy increasing with decreasing 1 - r (decreasing impact 
losses). 
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1 Introduction 
The development of instabilities due to lateral vibration is of 

concern in many industries with applications as diverse as 
floppy disk drives and guided saw blades. In such systems, 
energy provided to drive the system in rotation may be diverted, 
by virtue of interaction between the rotating and the nonrotating 
components, into unwanted vibration of the system. 

Iwan and Moeller (1976), Hutton et al. (1987), Ono, Chen, 
and Bogy ( 1991 ), and other researchers have analyzed mathe- 
matically the vibration characteristics of a constrained rotating 
disk. However, these investigations have not concentrated on 
defining the physical mechanisms that are responsible for the 
development of the instabilities that occur in such systems. Shen 
and Mote (1991) presented an explanation of the instability 
mechanisms of a stationary circular plate subjected to a rotating 
spring-dashpot-mass system. However, in general, the physical 
mechanisms involved in the instabilities that occur in con- 
strained rotating disks have not been adequately explained in 
previous papers, especially for instability mechanisms caused 
by an arbitrary interactive conservative or nonconservative 
force. Ir~ the present note the string model considered by Yang 
and Hutton (1995), which contains the essential elements of 
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duced into an RHS of the impact condition (2). Asymptotic 
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Fig. 1 A rotating string subjected to stationary interactive forces 

more general problems, is further analyzed with a view to pro- 
viding an analysis that illustrates, on a simple a model as possi- 
ble, the physical mechanisms that are responsible for the devel- 
opment of vibrational instabilities. 

New developments in this note involve an identification of 
the energy flux into the rotating system that is responsible for 
the instabilities and a definition of the relationship between the 
interactive forces involved and this energy flux. 

2 Energy Flux Considerations 
The idealized system under consideration is shown in Fig. 1. 

The equation governing the lateral vibration u (0, t) of the circu- 
lar string of radius r, rotating at a constant angular velocity f~, 
and constrained by an arbitrary constraint at (r, 0 = 0); together 
with the force boundary condition, can be expressed with re- 
spect to stationary coordinates as (Yang and Hutton, 1995): 

u,. + 2Ctu.o, - [ P / ( p r  2) - ~2Z]Uoo = 0 (1) 

u(0, t) - u(27r, t) = 0, 

p r ( S  2 - f~2)[u.0(27r, t) - u,o(O, t)] + Ft(0, t) = 0 (2) 

where Fz(0, t) = F,.(0, t) + F,,(0, t), represents an arbitrary 
constraint force consisting of a conservative component F~(0, 
t) and a nonconservative component F,,(0, t). S z = P / ( p r 2 ) ,  
P and p are the flexural wave speed, string tension (assumed 
constant), and density per unit length, respectively. 

The rate of change of total vibration energy E,, in the system 
can be shown to be 

E., = -r f~F~(O,  t ) f f , (O,  t) 

- F,,(0, t)[u,(0,  t) + r~2VA0, t)] (3) 

where ffs(0, t) = [u.0(27r, t) + u.o(O, t ) ] / ( 2 r )  is the average 
slope of the string at the constraint location. Equation (3) can 
also be rewritten in the following forms: 

E., = -r f~[Fo~(t)  + Fo,( t )]  - F,,(O, t)u.,(O, t)  

= - r i T e ( t )  + [ - f~T. ( t )  - F.u,(0, t)] (4) 

////// 

TD(t),~"~"....~.I 
tan(a) = U,s 

Fig. 2 Interactive forces applied to the rotating string due to a spring 
constraint 
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Response characteristics due to stiffness constraint ( k '  = 
k r / P  = 2.0) ;  (a) modal frequencies, (b) the phase differences 

where, Foe(t) = Fc(t)V.,.(O, t) and Fo,( t )  = F,,(t)V.,(O, t) are 
the circumferential components of the interactive conservative 
and nonconservative forces, respectively. The torques produced 
by these circumferential components can be expressed as T,.(t) 
= Fo,.(t)r and T~(t) = Fo,,(t)r.  

3 Instability Mechanisms for Some Particular Cases 

Figure 2 illustrates the forces involved for the case where the 
constraint consists only of a linear stiffness component. The lateral 
component Fk of the interactive elastic force must balance the 
spring force ku(O, t) whereas the horizontal component Fok(t) of 
this force will result in a torque F~kr applied to the string. This 
torque must be balanced by the driving torque TD in order for the 
system to rotate at constant speed. If f ( -Fok) r f~d t  = f ( - k u ( O ,  
t ) ) r Q d t  > 0, i.e., the work done by TD is greater than zero over 
a complete cycle of motion, instability will result. 

For the case of nonconservative forces it can be seen from 
Eq. (3) that the driving energy required for steady rotation will 
be transferred into lateral vibration if the lateral interactive force 
( - F , ( t ) )  is in phase with the absolute lateral velocity ~i,.(0, t) 
= u t(0, t) + rQff,.(0, t), which is also the velocity measured 
in the coordinates rotating with the string. However, in the case 
of conservative forces, the system becomes unstable when the 
lateral force F,.(t) is in phase with the slope ~.~(0, t), because 
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Fig, 5 Net energy changes of the fourth backward mode due to a sta- 
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[ 2 '  = 1 .72  

the conservative forces, such as the inertial and elastic forces, 
are always 90 degrees out of phase with the velocity u.,(0, t). 

When the rotating speed f~ equals the wave speed S, the 
backward-wave mode shape appears as a stationary wave (i.e., 
u , (O,  t) = u t(0, t) = 0) when observed from stationary coordi- 
nates. It can then be noted from Eq. (2) that divergence instabil- 
ity cannot occur because the interactive force/ ' i (0,  t) becomes 
zero when f~ = S, so that E , ( t )  = 0, i.e., there is zero energy 
input into the system. The instabilities that occur in the present 
problem are either flutter or terminal instabilities. 

4 Flutter and Terminal Instabilities 
Flutter instability is a type of dynamic instability character- 

ized by oscillations with increasing amplitude. The flutter insta- 
bility due to a stationary stiffness (or mass) always occurs in 
conjunction with the coupling of two modes in a given speed 
region, as shown in Fig. 3(a) .  It can be easily proven that the 
phase difference between the lateral interactive force ( - k u  (0, 
t)) and the average slope ff.si(0, t) for a single mode is always 
90 deg in an uncoupled region. In the flutter region, the coupled 
modes have identical frequencies and mode shapes. In this case 
the phase difference between Fki and ff.si(0, t) varies from 90 
deg to 0 deg, as shown in Fig. 3(b).  

Within the flutter region, the total circumferential force gener- 
ated by a constraint having both mass and stiffness characteris- 
tics is given by 

Fc = Fok + Ft,, = m(co~ - cv~)u(O, t)ff,.(O, t) (5) 

where COo 2 = k / m .  cv~ is a frequency in the flutter region. The 
flutter instability can therefore be minimized by setting w02 = 
~ ,  where ~ is an average frequency over the flutter region. 
Figure 4 illustrates four flutter instability regions before and 
after such a modification is made. The flutter regions reduce or 
even disappear due to a significant reduction of the resultant 
circumferential force. 

Terminal instability refers to a special flutter instability which 
occurs at all speeds above a particular rotating speed. A typical 
example of terminal instability is that caused by a stationary 
viscous damper. For a constraint consisting only of a stationary 
damper, the resultant energy change in the system can be ex- 
pressed from Eq. (3) as 

f0 AE = Fa[u.,(0, t)  + r~2ffs(O, t ) ]d t  

fo = [r[2Fdff.x.(O, t) -- cu](O, t ) l d t  (6) 

where Fd = --cu,(O, t) .  It is noted from Eq. (6) that the energy 
into the system equals the difference between the input energy 

required to overcome the resistant torque induced by the damper 
and the energy dissipated by the same damper. It can be shown 
that instability occurs only when the backward-wave mode is 
excited by the stationary damping force at supercritical speeds. 
In this case the lateral damping force is always in phase with 
its velocity, measured in the string-fixed coordinates, which is 
independent of the rotating speed. 

Figure 5 shows the net energy changes for the fourth back- 
ward-wave mode caused individually by a spring and by a 
viscous damper that provide approximately equal transverse 
forces to the string. It can been seen from this figure that the 
net energy into the system through the damper is relatively small 
compared to that of the spring because the damper dissipates a 
portion of the input energy. 

5 Conclusions 
The stability characteristics of a constrained rotating string 

are determined by the ability of the system to divert driving 
energy into vibrational energy. When the interactive force be- 
tween a stationary constraint and a rotating string is in phase 
with the absolute velocity for nonconservative forces, or in 
phase with the average slope if,(0, t) for conservative forces, 
driving energy will be switched into vibration energy which 
leads to unstable behavior. This behavior has been mathemati- 
cally characterized in this note. The strength of the instability 
in a given flutter region can be minimized by choosing the 
natural frequency of the constraint to coincide with a frequency 
in the instability region. 
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Fig, 1 A curve rigid line problem in an infinite plate 

lem (Chen and Hasebe, 1992). However, the formulation was 
only used to the case that the rigid line was in a floating state• 
This means no forces are applied on the rigid line. In the mean- 
time, for the rigid straight line with loading on-line, the problem 
was proposed and solved by Dundurs and Markenscoff (1989). 

In this note, the circular rigid line problem with loading on- 
line is studied and solved. It was found that, for the aforemen- 
tioned particular case, an explicit form for the kernels in the 
singular integral equation can be obtained. The form of the 
investigated function in the equation ( h ( t )  in the following 
analysis) can be assumed from a direct inspection. Finally, the 
solution in a closed form is obtainable. 

2 Formulat ion  of  the Problem in a General  Case 
The following analysis depends on the complex variable 

function method in plane elasticity (Muskelishvili, 1953). In 
this method the stresses (crx, Oy, a x y ) ,  the displacements (u, v), 
and the resultant force function (X, Y) are expressed in terms 
of two complex potentials qS(z), qO(z) such that 

~rx + cry = 4 Re ~ ' ( z )  

ay - ~ + 2i~rxy = 2[~-~b"(z) + ~0'(z)] (1) 

f =  - Y  + iX = qS(z) + zch'(z) + O(z)  (2) 

2 G ( u  + iv) = ~ b ( z )  - zqb'(z) - ~O(z) (3) 

where G is the shear modulus of elasticity, K = (3 - u) / (1 + 
u) is the plane stress problem, and u is the Poisson's ratio. 

In the problem we assume that ( 1 ) the stresses and the rota- 
tion (Ov/Ox - Ou/Oy) vanish at infinity and (2) the forces F~, 
Fy and the moment m are applied at the point ( x ,  y,.) (Fig. 1 ). 
In the actual analysis, the second condition is satisfied in the 
sense that the distributing forces applied on the rigid line are 
statically equivalent to the aforementioned forces F~, F r and 
the moment m in Fig. 1. 

The appropriate complex potential for the curve rigid line 
problem has been obtained previously by Chen and Hasebe 
(1992), which is as follows: 

~b(z) : - ~ Log (z - t ) h ( t ) d t  

~0(z) = ~ Log (z - t ) h ( t ) d 7  - 2--~ t - z 

where h ( t ) ,  t E L takes the complex value in general. Physi- 
cally, the function h ( t )  represents the body force density. Pre- 
viously, we obtain the following relation (Chen and Hasebe, 
1992): 

B R I k P  N U l  k S  

[N(t)  + iT( t )]  + - [N(t)  + i T ( t ) ] -  

= [Nb(t)  + iTb(t)] = i(K + 1)h(t) ,  t E L (5) 

where [N0(t) + iTb( t ) ] ( t  E L)  denotes the distributing forces 
applied along the curve rigid line. 

The relevant singular integral equation takes the form (Chen 
and Hasebe, 1992) 

~ f z  h ( t ) d t + - - K - f L K ' ( t ' t ° ) h ( t ) d t  
• t - to 27r 

1 
f K2(t ,  t o ) h ( t ) d T  = 2Gy i  (to E L)  (6) 

27r JL 

where y denotes the rotation of the rigid line and 

=__( ,°,1 d Log 
Ki (t ,  to) dto to - Z-/ 

d ( t o - t )  
K2(t,  to) = - ~o  \ ~  -----~-/ ' (7) 

Since the distributing forces [Nb(t) + iT~,(t)] are statically 
equivalent to the forces Fx, Fy and the moment m, thus we have 

(K + 1) J~ h ( t ) d t  = Fx + iFy (8) 

(K + l )  Im f L T h ( t ) d t = m  + x , . F y -  y,.Fx. (9) 

The stress singularity coefficient at the tips A and B in Fig. 
1 can be evaluated by (Chen and Hasebe, 1992) 

(KiR - iK2R)A = (271") 1/2 Lira ~/It - al h ( t )  
/--~a 

(K i t  - iK2R)~ = - ( 2 7 r ) m  Lim ( I t  - b l h ( t ) .  (10) 
t~b  

3 Solution for the Circular Rigid Line Case 
In the circular arc rigid line case (Fig. 2), a solution in closed 

form is obtainable. In this case, we have 

= t jo  = R z, dT= - R 2 d t / t  2 (t ,  to E L) .  (11) 

Here, L denotes the circular arc configuration (Fig. 2). Substi- 
tuting (11) into (7),  Eq. (6) becomes 

~ fLh(t)dt+ ~-~- fL l 
7r t - to 27r to 

+ I f  l h ( t ) d t  = 2 G y i  (to c L) .  (12) 
27r JL t 

To solve the equation, we introduce the following function: 

Y R ~ b ~ / / / ~  B L 

Fig. 2 A circular arc rigid line problem in an infinite plate 
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X ( z )  = x/(z - a ) ( z  - b ) ,  

(taking the branch Lim X ( z ) / z  = 1) (13) 
z+~ 

where a = R e x p ( - i 0 ) ,  b = R exp(i0) .  In addition, we define 

X ( t )  = X + ( t )  ( t E L ) .  (14) 

From the assumed definition, it follows that 

X ( t )  = X + ( t )  = - X - ( t ) ,  X ( t )  = R X ( t ) / t  (t E L).  (15) 

In the meantime, it is easy to 
(Chen, 1994): 

fL - - L -  d----~- - O, 
X ( t )  t - to 

f L R dt _ 7ri 
t X ( t )  t - to to 

quadrature the following integrals 

f L t dt _ 7ri 

Rxi t )  t -  to R 

(to e L) (16) 

- -  = -Tri(cos 0), ~ X @ t ) -  7ri, fL tdt e Tt) 

f .  Rdt fL R2 dt _ 7ri(cos 0). (17) 
tX(t-----) - 7ri, 7 X ( t )  

The solution will be investigated in two groups. 
( 1 ) In the first group we let F ,  :¢: 0, Fy = 0, m = 0. In this 

case, it is suitable to assume 

h( t )  = i c~ + c2-~ + c3 X ( t )  (18) 

Substituting 18) into (12),  (8) ,  (9) ,  and using (16),  (17),  
we obtain the following solution: 

2K - 1 - cos20 Fx 
C! = 

2~c-  1 + cos0  2rr(K + 1) 

1 + cos 0 Fx 
C 2 

2 K -  1 + cos 02rr(K + 1) ' 

Fx 
c 3 -  , 3' = 0. (19) 

2rc(t~ + 1) 

In addition, substituting (18) into (10),  the stress singularity 
coefficients at the tips A and B are obtainable 

(K~R - iK2R)A = t [Cl + C2 exp(-- i0)  

+ c3 exp(i0)]  exp( iO/2)  (20) 

(KIR)B = (KIR)a, (K2R)e = --(K2R)A (21) 

(2) In the second group, we assume F v e: 0, m ~ 0, Fx = 0,. 
In this case, it is suitable to assume 

( t ~ )  1 (22) 
h( t )  = dj + d 2 ~  + d3 X ( t )  

Substituting (22) into (12),  (8) ,  (9) ,  and using (16),  (17),  
we obtain the following solution: 

dl 27r(K + 1) 1 - cos 0 R (1 - cos O)Fy , 

d2 m 
1 ( 2m ) 

27r(K + 1) 1 - cos 0 R ' 

d3 -- Fy  
27r(K + 1) 

1 
y - - -  (dl + (21< + 1)d2 + d3 cos 0). (23) 

4GR 

In addition, substituting (22) into (10) ,  the stress singularity 
coefficients at the tips A and B are obtainable: 

(KiR -- iK2R)A = ~ [dl + d2 e x p ( - i 0 )  

+ d3 exp(i0)]  exp( iO/2)  (24) 

(KiR),, = --(KiR)a, (K2R)~ = (K2R)A. (25) 
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Analysis of a Rotating Pendulum 
With a Mass Free to Move Radially 
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Analysis o f  a pendulum pivoted on a rotating shaft. The mass 
o f  the pendulum is f ree  to move radially. The shaft is nearly 
horizontal. 

Introduction 
Pendulums with imposed oscillations have been studied by 

many researchers. Stephenson (1908) presented the inverted 
pendulum. Lowenstern (1932) analyzed the inverted spherical 
pendulum and compound pendulums with excitation. Miles 
(1962) investigated stability of the downward vertical position 
of a spherical pendulum with horizontal excitation. Sethna and 
Hemp (1964) analyzed a gyroscopic spherical pendulum with 
an imposed vertical oscillation. Phelps and Hunter (1965) pre- 
sented an analytical solution for the linearized inverted pendu- 
lum with harmonic excitation at an unrestricted frequency. 
Mitchell (1972) investigated the inverted pendulum with almost 
periodic excitation and with stochastic excitation. Howe (1974) 
described a theory of stabilization of the inverted position by 
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Fig. 1 The pendulum 

imposed random oscillations. Ryland and Meirovitch (1977) 
investigated the radially flexible pendulum with vertical excita- 
tion. Stability boundaries for the upward and downward vertical 
positions were established. Levi (1988) presented a topological 
proof of stability of the inverted pendulum. Schmidt (1980, 
1981, 1983, 1990) investigated several parametrically excited 
pendulums with various characteristics such as radial flexibility, 
rotational flexibility, and imposed rotational oscillations. Inter- 
esting equilibrium positions were found. Schmidt and McDow- 
ell (1992) analyzed a pendulum pivoted on a rotating arm. A 
surprising stable equilibrium position was found. Acheson 
(1993) established a stability theorem for compound inverted 
pendulums. Acheson and Mullin (1993) presented experimental 
results for compound inverted pendulums. Levi and Weckesser 
(1995) presented a geometrical explanation of the inverted pen- 
dulum. 

In this work we consider a pendulum pivoted on a rotating 
rigid shaft. (See Fig. 1.) The shaft is horizontal or nearly hori- 
zontal and is rotating at a constant speed. The angle between 
the shaft and the horizontal plane is denoted by c~. The pendulum 
is made up of a rigid weightless rod and a spherical mass. The 
mass is allowed to slide freely on the rod and,by some unspeci- 
fied design, the radius of the mass is allowed to be positive, 
negative, or zero. The expectation is that the pendulum would 
swing outward and the mass would slide off the rod. While this 
motion can occur, we find that there can be a steady-state motion 
with the pendulum remaining near the axis of the shaft and with 
the mass remaining near the pivot. We employ the method of 
averaging to describe this steady-state motion. 

The motion is described by two second-order differential 
equations. We use a transformation which gives four first-order 
differential equations in the standard form for the method of 
averaging (See Bogoliuboff and Mitropolskiy 1962). We use 
the improved first approximation of the method of averaging to 
find the steady-state motion of the pendulum along with the 
transcient motion near the steady-state motion. Since we must 
approximate the differential equations in order to make our 
analysis, we verify our result with a modest numerical investiga- 
tion. 

The Analysis 
The equations of motion are 

d2r m r (  dO ~ 2 dr  
m ~Tg - m r ~  2 s i n  2 0 -  \ - ~ - /  + C, d t  - mg2 cos  O 

+ mg. sin 0 sin ~t  = 0 

and 

BRIkP N u  I ~o  

( I  + m r  2) d20 dr  dO dO 
dt  2 + 2 m r - - -  mrZQ 2 sin 0 cos 0 + c2 

dt  dt dt  

+ m g 2 r s i n O  + m g ~ r c o s O s i n ~ t  = 0, (la, b) 

where m is the mass, r is the radius, 0 is the angle of the 
pendulum measured from the axis of the shaft, I is the moment 
of inertia of the mass, g is gravity, g~ is the component of 
gravity perpendicular to the shaft, g2 is the component of gravity 
in the direction of the shaft, ~2 is the angular rate of the shaft, 
Cl and c2 are damping coefficients, and t is time. We establish 
dimensionless parameters and variables. 

Let 

r g g~ 
x = - - ,  r = ~lt, e -  e'y, - 

r,, ,. ~ 2 ' r~,~2 2 , 

= - -  C2 
6 3"}/2 - -  g 2  C~ and 6 a  2 --  

r,,Q2 ' ea, m~2 ' nmr~2 

where r,, is the radius of gyration of the mass. This yields 

d2___f 
-- X (  dO ~ 2 dx  ~3 'y  2 COS 0 

dr 2 xs in  2 0 -  \ d r /  + ¢ a l d - - ~ -  

+ e7~ sin 0 s i n r  = 0 

and 

(1 + x 2) d20 dx  dO x2 dO 
dT 2 + 2x sin 0 cos 0 + ea2 

d r  d r  d r  

+ e3y2x  sin 0 + ey~x  cos 0 sin r = O. (2a, b)  

Up to this point, no approximations have been made. We 
now restrict the problem so that x and 0 are near zero. 

Let 

cy = X, 

and 

e~b = 0. (3a.b) 

We approximate Eq. (2) by substituting Eq. (3) in Eq. (2) and 
discarding third-order terms. This gives 

d2y eZyq5 2 - e2y + eal d y  
d T  2 d T  

and 

d2__._~ + 2e23, & d~ 

d r  2 d r  d r  

- e272 + ey~qb sin r = 0 

- - -  - e2y%~ + ~a2 d r  

+ eY lY  sin ' r  = 0. (4a, b)  

To express Eqs. (4) in the standard form for tim method of 
averaging, we introduce the transformation 

- - =  ez + e y ~  cos r 
dr  

and 

d ~  _ ~ + eyLy cos r. (5a, b )  
d'r 

Substituting Eq. (5) in Eq. (4) gives two first-order differential 
equations involving ( d z / d r )  and ( d ~ / d r r ) .  These along with 
Eqs. (5) give four first-order differential equations in the vari- 
ables y, z, ~, and ~0. They are 
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- ~  = e(z + 7~4' cos r ) ,  
d r  

& 
- -  = e ( - Y l ( O  + 3"~Y cos r )  cos r 
d r  

- at(z  + y~b cos r )  + yq~2 + 3 ' 2 ) ,  

d_~_ = e(tp + 3',y cos r ) ,  
d r  

and 

dd* = e ( -3" , ( z  + 3"14~ cos r )  cos r + y 2 ~  
d r  

-- a2(I// + 3 ' ,y  cos  " r ) ) .  (6a, b,c,d) 

We have discarded second-order terms in Eq. (6).  We apply 
the averaging process to Eqs. (6).  This yields 

dY 
- -  = ~ Z ,  
dr 

d (1 ) 
- -  = e - Y2Y - a~Z + y ~ 2  + 3'2 
dr  2 

and 

dg~ 
m = e ~ ,  

d r  

- - =  e - 3 " ~  + y 2 ~  _ a2qd 
d r  2 

(7a, b,c,d) 

where Y, Z, ~, g' are the slow parts of y, z, ~, and ~. If we 
could solve Eqs. (7),  we could use the improved first approxi- 
mation of the method of averaging to obtain approximate solu- 
tions for y and 4). This would give 

and 

y =  Y +  e3"~ sin r 

ch = • + ey~Y sin r ,  (8a, b) 

where Y and • are solutions of Eqs. (7). We cannot solve Eqs .  
(7).  We approximately find a solution by linearizing near the 
equilibrium solution Ye = (23"2/y~) and ~e = 0. We do not 
consider other equilibrium positions. We substitute 

and 

y = 2 ~ + _ _  zXY 
Y7 

q) = Aq~ (9a, b) 

in Eq. (7) and discard products of A y  and A~.  This gives a 
linear system in A y  and A ~  which is easy to solve. Then the 
approximate solution to Eq. (7) is given by Eqs. (9) in which 

ruler. C2e-m2er Cje + if ml ~ m2 

2xg = [ or C~e-m, ~ + C2~Te-ml er, if m~ = m2, 

and 

~ E~e -'h`~ + E2e "2er, if nl ~ n2 

2x~ = [ or Eje-tlIET "1- E2cre-",~,  if nl = I~/2, 
(10a, b) 

and 

~/2 

shaft Jr o 

Jl 

3~/2 
(a) 

a/2 p3zc/2 
- T -  

- - 0  
shaft _I._ 

0,:g 

(b) 

Fig. 2 (a) The motion when ~ Y  > 0 and A~, > 0 (b) the steady-state 
motion 

m, = ½(a, - ~ - 2y2), 

1 
m2 = g (a l  + ~ -- 23 '~) ,  

l ~ _ (3 '~_83 '~  
nt = ~ ( a 2  - a~ 2 3 ' 1 4 / ) ,  

,n=~ < +  a ~ -2  3'~- 3'{/ 

In order that the real part of nt in Eq. (11 c) be positive, we 
impose the condition 

3'7 - 8v_~ 3'i4 > 0. (12) 

Condition (12) causes the equilibrium positions of Eqs. (7) 
(YE = (23"2/3" 2) and ~F, = 0) to be stable and with condition 
(12), A y  and A ~  are diminishing exponentials or damped 
oscillations. Combining Eqs. (3),  (8),  and (9),  we obtain our 
approximate solution for x and 0. It is 

x =  e(-~+ky~ ~ Y ) +  e23'lL2X~ sin T 

and 

O =  c A @ +  e 2 y ] ( ~ +  A Y ) s i n r ,  (13a, b ) 

where 2x~ and 2xY are given by Eqs. (10) along with Eqs. 
(11). 

Equation (13) is an approximate solution of Eq. (2) when 
&Y and &~ are small. As AXY and ~ approach zero, the 
approximate solution Eqs. (13) approach the approximate 
steady-state solution 

2yy2 

3'2 
and 

0 = c 2 23'2 sin 7. (14a, b) 
3"t 

We present Eqs. (14) along with Eqs. (13) as our result. 
Equation (14a) indicates the radius of the pendulum is approxi- 
mated by the positive constant e(23"2/y~2). Equation (14b) indi- 
cates 0 makes a small conical motion near the axis of the shaft. 
The cone angle is c2(23'2/3'~) ~ 2a. Figure 2 (a )  shows the 
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Table 1 The numerical solution and the method of averaging solution 

Numerical Solution Method of Av, Sol. 
X k xxlO 2 0xl0  3 Xxl0 2 0xlO 3 

0 1.40000 6.00000 1.40000 6.00000 
.5~ 0 1.40819 6.24335 1.40863 6.25714 

2.5n 1 1.39652 6.17842 1.39532 6.16654 
6.5~ 3 1.37709 6.09775 1.36956 5.98939 

10.5n 5 1.36068 6 . 0 5 0 0 1  1.34493 5.81749 
14.5n 7 1.34591 6.01504 1.32136 5.65068 
20.5n 10 1.32545 5.96792 1 , 2 8 7 9 1  5.40968 
40.Sn 20 1.26496 5,77349 1.19119 4,68046 
80.5~ 40 1.16423 5,18468 1.06155 3.51274 

140.5n 70 1,04538 4 . 0 7 3 7 1  0.92986 2.30279 
200.5n 100 0,95729 2.99659 0.86714 1.53028 
400.5~ 200 0.82848 0.90953 0.80757 0.46962 
600.5~ 300 0,80649 0,33547 0.80089 0.23014 
800.5~ 400 0.80354 0,20043 0 . 8 0 0 1 1  0,17591 

1000.5n 500 0.80317 0 . 1 6 9 3 1  0.80002 0,16361 
1200,5n 600 0.80312 0.16216 0.80000 0.16082 

pendulum with AY > 0 and A ~  > 0. Figure 2(b)  shows the 
pendulum in steady-state motion. The pendulum is shown for 
shaft rotation angles 0, (1/2)7r, 7r, (3/2)7r. In order to depict 
the motion clearly, we have distorted the scale in Fig. 2. The 
angles are exaggerated and the mass is diminished. 

Some thought about Fig. 2 can provide some understanding 
of the phenomenon. To gain a better understanding of the 
phenomenon, we consider some terms in Eqs. (2) .  The term 
- e3y2 cos 0 in Eq. (2a)  represents the component of the gravi- 
tational force in the positive radial direction. It would be ex- 
pected that this force would destroy the steady-state motion by 
causing the radius to increase. The term ey~ sin 0 sin ~- seems 
to be an oscillating term, but it has a slow part which mostly 
cancels -e3y2  cos 0. To see this, we consider the slow parts 
of these terms with x and 0 replaced by Eqs. (13).  We use the 
overbar to denote the slow part. This gives 

-c3y2 cos 0 + ey, sin 0 sin ~- ~ c 3 ½y~AY. 

In this approximation small angle formulas were used. The 
positive radial force is cancelled. The slow parts of these terms 
combine to give a term which represents a negative radial force 
when A y  is positive. 

We consider the moment caused by the centrifugal force. The 
third term in Eq. (2b) ,  - x  2 sin 0 cos 0, represents the moment 
(about kz) caused by the centrifugal force. This moment acts 
to enlarge 0 and degrade steady-state motion. The sixth term 
counteracts this. To see this, we substitute our approximate 
solution, Eq. (13),  into the third and sixth terms of Eq. (2b) 
and consider the slow parts. This gives the approximation 

- x  2 sin 0 cos 0 + ~')/lX COS 0 sin ~- ~ e 3 (  l 4 y ~ )  A ~  ~Y~- ~,~} \ 

In this approximation, small angle formulas were used and prod- 
ucts of A y  and A ~  were discarded. This indicates that the 
moment caused by the centrifugal force has been cancelled and 
these two terms approximately cause a restoring moment if 

1 2 (g)y~ - 4(y~/ 'y  4) > 0, i.e., if condition (12) holds. 
Considering these terms in Eqs. (2) with x and 0 approxi- 

mated by Eq. (13) strongly suggest that forces and moments 
acting to destroy steady-state motion are cancelled by the para- 
metric excitation in Eqs. (2).  

Numerical Analysis 
In our analysis, Eqs. (2) were approximated by Eqs. (4).  

Because of this, a brief numerical analysis seemed appropriate. 
We applied the Runge-Kutta method of order four to Eqs. (2).  
The step size is 0 r /200)  ~ .016. 

In Table l we present some numerical results with printout at 
~- = Or/2) + 2k7c for some different integer values of k for this 
example: c = .02, Yl = 1, y2 = .2, al = 3, a2 = 3, x(0) = .014, 

, ~ I ~ ,  , . U l 1 - . o  

x ' ( 0 )  = 9.8745 × 10 -5, 0(0) = .006, 0 ' ( 0 )  = 2.658433 × 10 4 
The corresponding points obtained from Eqs. (13) ate also shown. 
The values of the constants G, C2, El, and E2 in Eqs. (10), for 
the above example, are C1 = .3, Cz = 0, El = .3, E2 = 0. 

There is close agreement between the numerical results and 
the analytical approximation given by Eq. (13).  Numerical re- 
sults (not shown in Table 1) were obtained, for the above 
example, for ~- = 2kTr, r = ~r + 2kTr and 7- = (~)~r + 2kTr. 
These results agree well with Eq. (13).  However, for large ~- 
the numerical approximation of x shows a small oscillation 
which does not appear in Eq. (14a).  For r = (½)Tr + 2kTr and 
T = (~)Tr + 2kTr (k large), the numerical x stabilizes at 
.0080106. For -r = 2kTr and r = ~- + 2k~r, x stabilizes at 
.0080027. Apparently there is a small oscillation in x even when 
3- is large. Figure 2 (b )  suggests an oscillation in x should occur. 
Equation (14a)  indicates that x approaches .0080000. 

Conclusion 
Our analysis shows that gravity combined with the rotation 

of the shaft causes a parametric excitation which can create a 
surprising steady-state motion. 

Conventional intuition would suggest that the pendulum 
would swing briskly away from the axis of the shaft and the 
mass would slide off the rod. While this motion can happen 
and is likely, our analysis shows that the pendulum can take on 
this motion: The pendulum oscillates near the axis of the shaft 
and the mass approximately maintains a constant radius. The 
motion is described by Eqs. (14).  In terms of the original vari- 
ables and parameters, the motion is described by 

2g2I~ 2 

g~m 

and 

0 = 2g----2 sin fh. (15a, b) 
gt 

Equations (15) approximately satisfy Eqs. (1) for the restric- 
tions we impose. 
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Fig. 1 Schematic diagram of the load fixture used to measure the tensile 
properties of metallic foils 

A fixture has been developed for testing thin specimens under 
uniaxial tension. The fixture consists of  two cantilever beams with 
strain gauges attached to them close to their fixed ends'. The 
displacement of  one beam is used to measure the force and the 
difference in the displacements of  the beams is used to measure 
the sample displacement. The tensile properties of  0.025 mm by 
1.25 mm by 5 mm iron-nickel specimens were measured. The 
tensile plastic yield point of the specimens was observed to be 1.4 
GPa and the total elongation to failure turned out to be five percent 
and eight percent, for the two tested specimens. 

Introduction 
Tension tests are widely used to measure the strength and 

ductility of different materials under uniaxial tensile stresses. 
A variety of tension testing machines are available commer- 
cially with a wide range of loading rate and load capacity, with 
interchangeable grips to hold various test specimens. A majority 
of commercially available tension testing machines are not ca- 
pable .of testing tensile properties of very thin and small speci- 
mens due to the small loads required for failure and inability 
to mount the specimens in the grips. 

The tensile properties of thin films has been studied by using 
mini tensile testers (Rudd et al., 1993; Griffin et al., 1992; 
Noyan and Sheikh, 1993). Ruddet  al. (1993) measured the 
strains in thin films by monitoring the position of laser spots 
diffracted from a grating created on the surface of the specimen. 
Griffin et al. (1992) measured stress from the load cell and 
strain from the rotational speed of their screw driven tensile 
tester. Noyan and Sheikh ( 1993 ) used a standard uniaxial tensile 
test with X-ray diffraction techniques to measure mechanical 
stress-strain relations and X-ray stress and strain in the diffract- 
ing regions of the specimen. In this study, the tensile properties 
of thin metallic foils are studied on a new test fixture, which 
allows the measurement of the tensile properties of very small 
metallic foils, in conjunction with any standard testing machine. 
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Experimental Procedure 
Iron-nickel foils were used in these experiments. The dimensions 

of the foils were 0.025 mm by 1.25 mm by 5 ram. Figure 1 is the 
schematic diagram of the load fixture. It consists of two cantilever 
beams with strain gauges mounted on them close to their fixed 
ends. The calibrated displacement of one beam gives the force 
applied to the sample, whereas the difl?rence in the displacement 
between the two beams gives the displacement of the sample. 

A system of alignment pins and hinges were used to eliminate 
bending loads on the foils and to facilitate sample installation. 
The sample is glued and clamped in place between the two 
cantilevers. The lower beam is loaded through a spring, the other 
end of which is connected to the lower ram of a servohydraulic 
machine, The strain gauge outputs were digitized and the force- 
displacement curves were computed, from which stress-strain 
curves were obtained. 

Results and Discussions 

Two iron-nickel samples were tested to failure under tension. 
Figure 2 shows the stress-strain curve for both samples. The tensile 
yield point for both samples was measured to be about 1.4 GPa, 
while the total elongation varied between five percent and eight 
percent. Both samples failed near the interface with the grip, indicat- 
ing a possible stress concentration problem due to sample geometry. 

The total elastic displacement of the sample was of the order 
of 12 microns. Because of the small elastic displacement and 
the limits set by the precision of the pins and hinges, it was not 
possible to measure the Young modulus with this load frame 
which was designed to measure the initial yield and ultimate 
strength of the material. 

The cross section of the samples tested in this study was 
uniform. Hence, the grips apply shear stress in the region where 
the compressive load is maximum. Consequently, the samples 
were observed to fail near the interface with the grip. By using 
a "dogbone" shaped geometry for the samples, the failure can 
be expected to occur at the center of the gage section, rather 
than near the gage ends. 

Conclusions 

The extremely small size of the samples introduced a number 
of difficulties, such as sample handling and attaching the sample 
to the grips. In spite of these, a good measurement of the yield point 
and the ultimate strength was made. By changing the geometry of 
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A fixture has been developed for testing thin specimens under 
uniaxial tension. The fixture consists of  two cantilever beams with 
strain gauges attached to them close to their fixed ends'. The 
displacement of  one beam is used to measure the force and the 
difference in the displacements of  the beams is used to measure 
the sample displacement. The tensile properties of  0.025 mm by 
1.25 mm by 5 mm iron-nickel specimens were measured. The 
tensile plastic yield point of the specimens was observed to be 1.4 
GPa and the total elongation to failure turned out to be five percent 
and eight percent, for the two tested specimens. 

Introduction 
Tension tests are widely used to measure the strength and 

ductility of different materials under uniaxial tensile stresses. 
A variety of tension testing machines are available commer- 
cially with a wide range of loading rate and load capacity, with 
interchangeable grips to hold various test specimens. A majority 
of commercially available tension testing machines are not ca- 
pable .of testing tensile properties of very thin and small speci- 
mens due to the small loads required for failure and inability 
to mount the specimens in the grips. 

The tensile properties of thin films has been studied by using 
mini tensile testers (Rudd et al., 1993; Griffin et al., 1992; 
Noyan and Sheikh, 1993). Ruddet  al. (1993) measured the 
strains in thin films by monitoring the position of laser spots 
diffracted from a grating created on the surface of the specimen. 
Griffin et al. (1992) measured stress from the load cell and 
strain from the rotational speed of their screw driven tensile 
tester. Noyan and Sheikh ( 1993 ) used a standard uniaxial tensile 
test with X-ray diffraction techniques to measure mechanical 
stress-strain relations and X-ray stress and strain in the diffract- 
ing regions of the specimen. In this study, the tensile properties 
of thin metallic foils are studied on a new test fixture, which 
allows the measurement of the tensile properties of very small 
metallic foils, in conjunction with any standard testing machine. 
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Experimental Procedure 
Iron-nickel foils were used in these experiments. The dimensions 

of the foils were 0.025 mm by 1.25 mm by 5 ram. Figure 1 is the 
schematic diagram of the load fixture. It consists of two cantilever 
beams with strain gauges mounted on them close to their fixed 
ends. The calibrated displacement of one beam gives the force 
applied to the sample, whereas the difl?rence in the displacement 
between the two beams gives the displacement of the sample. 

A system of alignment pins and hinges were used to eliminate 
bending loads on the foils and to facilitate sample installation. 
The sample is glued and clamped in place between the two 
cantilevers. The lower beam is loaded through a spring, the other 
end of which is connected to the lower ram of a servohydraulic 
machine, The strain gauge outputs were digitized and the force- 
displacement curves were computed, from which stress-strain 
curves were obtained. 

Results and Discussions 

Two iron-nickel samples were tested to failure under tension. 
Figure 2 shows the stress-strain curve for both samples. The tensile 
yield point for both samples was measured to be about 1.4 GPa, 
while the total elongation varied between five percent and eight 
percent. Both samples failed near the interface with the grip, indicat- 
ing a possible stress concentration problem due to sample geometry. 

The total elastic displacement of the sample was of the order 
of 12 microns. Because of the small elastic displacement and 
the limits set by the precision of the pins and hinges, it was not 
possible to measure the Young modulus with this load frame 
which was designed to measure the initial yield and ultimate 
strength of the material. 

The cross section of the samples tested in this study was 
uniform. Hence, the grips apply shear stress in the region where 
the compressive load is maximum. Consequently, the samples 
were observed to fail near the interface with the grip. By using 
a "dogbone" shaped geometry for the samples, the failure can 
be expected to occur at the center of the gage section, rather 
than near the gage ends. 

Conclusions 

The extremely small size of the samples introduced a number 
of difficulties, such as sample handling and attaching the sample 
to the grips. In spite of these, a good measurement of the yield point 
and the ultimate strength was made. By changing the geometry of 
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the specimen, different metallic and nonmetallic foils with varying 
strengths can be tested with this kind of fixtures. 
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A C o m p a r i s o n  Between  Direct  and 
Indirect  Frict ion M eas urement s  in a 
Forced  Oscil lator 

J.-W. Liangl'3 and B. F. Feeny 2'3 

1 I n t r o d u c t i o n  

Characterizing macroscopic friction behavior is important in 
many engineering tasks, such as those involving control, and 
squeak and squeal prediction. Two schools of thought for mea- 
suring macroscopic friction forces involve the employment of 
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a load cell and the calculation of the friction force by measuring 
motion signals and applying them to the system's governing 
equation. Direct load-cell measurements are most often found 
in the literature. Examples can be found in recent books and 
reviews, such as Guran et al. (1996), Ibrahim (1994), Arm- 
strong-H61ouvry et al. (1994), and Oden and Martins (1985), 
or in any journal on the topic. 

Installing a load cell to frictional systems can be expensive, 
and is equivalent to adding a mass-spring subsystem and its 
dynamics to the main system (Streator and Bogy, 1994). Thus, 
the signal obtained from a load cell may not be able to com- 
pletely depict actual friction forces. On the other hand, the 
"indirect" calculation of the friction force from the system's 
ordinary differential equation (ODE) requires more than one 
transducer. The indirect measurement is therefore liable to para- 
sitic interference and calibration errors (Antoniou et al., 1965). 

A brief comparison between friction signals from both direct 
and indirect friction measurements is presented in this note. The 
measurements displayed here are in a forced mass-spring system 
during macroscopic sliding and macroscopic stick-slip. More 
details on the classification and modeling of these motions for 
this system were given previously (Liang and Feeny, 1998). 

2 A p p a r a t u s  a n d  I n s t r u m e n t a t i o n  

The apparatus (Fig. 1) consisted of a base-excited mass 
(m = 2.42 kg),  helical springs with a total stiffness of k = 
2310 N/m, and the friction-contact mechanism. The sliding 
mass moved in an air track. Motion in the air track was almost 
friction free, with a nondimensional viscous damping factor 
equal to 0.0008. This damping is subsequently neglected. The 
friction-contact mechanism consisted of a pinched-flange struc- 
ture mounted through a roller bearing, which was designed for 
balancing the normal loads on both sliding surfaces, as depicted 
in the cross-section diagram. 

The displacements of both the sliding mass and the base 
excitation were sensed by linear variable differential trans- 
former (LVDT). The LVDT signal passed through a signal 
conditioner. This LVDT was made by Rabinson-Halpern Co. 
(Model 210A-0500) and had a resolution of 2.5 #m after quanti- 
zation. A seismic accelerometer (PCB, Model 393C) was 
adopted to record the acceleration signal. This accelerometer 
had a frequency range of 0.025 Hz to 800 Hz with five percent 
transverse sensitivity and a resonant frequency of 3.5 kHz (125 
Hz with its mounting). The friction force was measured by a 
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the specimen, different metallic and nonmetallic foils with varying 
strengths can be tested with this kind of fixtures. 
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a load cell and the calculation of the friction force by measuring 
motion signals and applying them to the system's governing 
equation. Direct load-cell measurements are most often found 
in the literature. Examples can be found in recent books and 
reviews, such as Guran et al. (1996), Ibrahim (1994), Arm- 
strong-H61ouvry et al. (1994), and Oden and Martins (1985), 
or in any journal on the topic. 

Installing a load cell to frictional systems can be expensive, 
and is equivalent to adding a mass-spring subsystem and its 
dynamics to the main system (Streator and Bogy, 1994). Thus, 
the signal obtained from a load cell may not be able to com- 
pletely depict actual friction forces. On the other hand, the 
"indirect" calculation of the friction force from the system's 
ordinary differential equation (ODE) requires more than one 
transducer. The indirect measurement is therefore liable to para- 
sitic interference and calibration errors (Antoniou et al., 1965). 

A brief comparison between friction signals from both direct 
and indirect friction measurements is presented in this note. The 
measurements displayed here are in a forced mass-spring system 
during macroscopic sliding and macroscopic stick-slip. More 
details on the classification and modeling of these motions for 
this system were given previously (Liang and Feeny, 1998). 

2 A p p a r a t u s  a n d  I n s t r u m e n t a t i o n  

The apparatus (Fig. 1) consisted of a base-excited mass 
(m = 2.42 kg),  helical springs with a total stiffness of k = 
2310 N/m, and the friction-contact mechanism. The sliding 
mass moved in an air track. Motion in the air track was almost 
friction free, with a nondimensional viscous damping factor 
equal to 0.0008. This damping is subsequently neglected. The 
friction-contact mechanism consisted of a pinched-flange struc- 
ture mounted through a roller bearing, which was designed for 
balancing the normal loads on both sliding surfaces, as depicted 
in the cross-section diagram. 

The displacements of both the sliding mass and the base 
excitation were sensed by linear variable differential trans- 
former (LVDT). The LVDT signal passed through a signal 
conditioner. This LVDT was made by Rabinson-Halpern Co. 
(Model 210A-0500) and had a resolution of 2.5 #m after quanti- 
zation. A seismic accelerometer (PCB, Model 393C) was 
adopted to record the acceleration signal. This accelerometer 
had a frequency range of 0.025 Hz to 800 Hz with five percent 
transverse sensitivity and a resonant frequency of 3.5 kHz (125 
Hz with its mounting). The friction force was measured by a 
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Fig. 1 Schematic diagram of the experimental apparatus 

piezoelectric load cell (PCB, Model 208B) which had 0.00089 
N resolution in a range of 44.8 N in both tension and compres- 
sion. The nominal sensitivity was 110 mV/N with a stiffness 
of 1.75 × l 0  9 N/re. The discharge time constant of this load 
cell was 50 sec and the resonant frequency was 70 kHz (250 
Hz with its attachment). The sampling rate was 5 kHz. 

The system was driven by an electromagnetic shaker (LDS, 
Model 400). The friction contact was steel-on-steel. The planar 
surfaces were ground and rubbed with 400-grit, silicon-carbide 
paper. The other contact surfaces had hemispherical geometry 
and were lathed with an engineering finish then rubbed by the 
same type of paper. Finally, the surfaces were cleaned by a 
degreaser (Measurement Group, Inc., Model CSM-1 ). The sur- 
faces were then engaged in sliding motion for at least 30 minutes 
to attain a steady-state friction characteristic before the data 
were recorded. 

A phase shift existed between the accelerometer and LVDT, 
probably caused by filtering in the LVDT signal conditioner. 
To determine this phase shift, a free-vibration test of the mass- 
spring system was conducted with the base constrained. 

The measurements of displacement and acceleration are de- 
noted as Xm(t) and ±;,(t), respectively. There was a phase shift 
of ~b = 0.0389 radians by which the accelerometer signal leads 
the LVDT signal. This phase angle was converted to a time 
shift using ~- = ~b/w,,, and it was chosen such that the resultant 
force, namely mYm(t + 7-) + kXm(t), was close to zero with 
some random noise. A strong source of random noise was in- 
duced by the sound pressure fluctuation of the air track. 

Three sets of base-excited motion tests (Liang, 1996) indi- 
cated that the dependence of the phase shift on the excitation 
frequency was not significant over a reasonable range. The 
phase angles of accelerometer and the load cell were presumed 
to be approximately equal to zero based on their response char- 
acteristics and the low-frequency range of this study. 

Here there was virtually no viscous friction. If viscous friction 
were significant, a velocity signal would be needed. Integrating 

the acceleration would involve an integration constant, which 
could be chosen to produce zero mean in the velocity. Differ- 
entiating the displacement would amplify noise, although in this 
case perhaps not to the level of noise that is present in Z,,. If 
available, a velocity sensor such as a laser or LVT could be 
used, if care is taken in its calibration and phase determination. 

3 The Comparison Between Friction Signals 
To calculate the friction force from the system's equation of 

motion, namely F ( t )  = ky,,(t) - kx, ,( t)  - m2~,(t + T), where 
ym(t) represents the measured motion of the base, motion sig- 
nals Xm(t), Xm(t), and ym(t) are required. 

Figure 2(a)  illustrates the time-domain histories of the exper- 
imental inertial forces, f2 = mY(t  + T),  spring force, fl = 
kxm(t), and the base-excitation force, f3 = ky,,,(t). The fre- 
quency of harmonic excitation is 5.5 Hz. The response of the 
slider is a stable pure-sliding motion. The calculated friction 
force is presented in Fig. 2(b) and denoted as F( t ) .  Random 
noise caused mostly by the air track on the accelerometer signal 
was superimposed on the calculated friction signal. To 
smoothen the signal, a five-point moving average (Liang, 1996) 
was applied to generate the data shown in Fig. 2(c) and labeled 
F1 (t). Next, the friction fforce obtained from the direct mea- 
surements of the load cell after the same smoothening process 
(for comparison) is illustrated in Fig. 2(d) as F2( t ) .  The signal 
F2( t )  is obtained by subtracting the inertial component on the 
load cell due to the mass of the flange from the readout of the 
load cell. The raw version of F2( t )  is very similar to the aver- 
aged version since it does not register much transient dynamics 
as in the computation case. 

Three observations are made from these Figures. ( 1 ) During 
the whole test, the friction-force magnitudes are more or less 
constant. (2) Both methods are consistent regarding the macro- 
scopic dynamics friction feature. (3) There are subtle differ- 
ences between the two approaches at the change in sliding 
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Fig. 2 Time-domain comparison of direct and indirect friction measurements, excitation 
frequency = 5.5 Hz, stable pure sliding case, in (a) fl  labels the experimental spring force 
= kxm(t); f2 labels the experimental inertial force = m.~m(t + ~'); f3 labels the experimental 
excitation force = kym(t); (b) F( t )  is the calculated friction force; (c) F1 (t) is the averaged 
version of F(t); (d) F2(t) represents the load cell measurement after averaging 

B H I k P  N U I  L o  

direction. Regarding observation (3), a higher-frequency dy- 
namical response is registered in the calculated friction force 
than in the directly measured friction force. This may be because 
the load cell, with its attached flange, acts as a low-pass filter, 
and attenuates high frequencies. (The stiffness and mass of the 
attachment has a natural frequency and a bandwidth.) Further- 
more, some high-frequency oscillation is evident in the calcu- 
lated friction signal immediately following a velocity reversal. 
We speculate that this may be due to the dynamics of the 
accelerometer mounting. 

Two other stable pure-sliding cases were examined in 
which the excitation frequencies were 3.5 and 7.5 Hz (Liang, 
1996). Consistencies and discrepancies between the two ap- 
proaches are preserved in these tests, with the post-reversal 
oscillation slightly more prominent in the indirect signal of 
the latter case, and less evident in the former case. Since the 
same phase relationship was employed between the sensors 
at each excitation frequency, the consistent results indeed 
illustrate the reliability of the indirect approach over a reason- 
able frequency range. 

excitation freq. = 5.61 Hz 
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Fig. 3 Time-domain comparison of direct and indirect friction measurements, excita- 
tion frequency = 3.5 Hz, stick-slip motion case, in (a) fl:  the experimental spring force 
= kxm (t); f2: the experimental inertial force = mRm (t + ~) ; f3: the experimental excitation 
force = kym(t); (b) F( t )  is the calculated friction force; (c) F1 (t) is the averaged version 
of F(t); (d) F2(t) represents the load cell measurement after averaging 
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Figure 3 illustrates a case that has stick-slip motion. The 
excitation frequency is 3.5 Hz. Due to the presence of stick- 
slip, features of  the friction force are different, especially during 
the transition of sliding to sticking. A 47-Hz transition oscilla- 
tion occurs during the sticking phase. This transition oscillation 
is likely to be caused by the compliance of the contact and its 
surrounding structure (Liang and Feeny, 1998). The averaged 
calculated force of Fig. 3 (c)  and the transducer force shown in 
(d) are consistent with the exception of a slight high-frequency 
noise in the calculated force. 

4 Conclusion 
In this study, we compared friction measurements computed 

from motion sensors with those obtained directly from a load 
cell. While there are high-frequency differences between the 
direct and indirect measurements, the the correlation in the re- 
sults suggests that either method can be trusted for capturing 
the macroscopic friction behavior. This cross reference between 
two measurement techniques reinforces the applicability of the 
more commonly used load-cell technique. The indirect calcula- 
tion measurement is only practical for simple oscillators, which 
may he useful in studying basic phenomena such as friction, 
In more general multi-degree-of-freedom systems, the indirect 
measurement based on measured states is impractical, as the 
number of measurements needed may be arbitrarily large, and 
knowledge of the system equations of motion may be limited. 

Detailed comparisons of these measurement techniques 
showed that, although the load cell registered most of the fric- 
tion dynamics in our system, its high-frequency contents were 
attenuated to some extent. Perhaps a better load-cell mounting 
strategy may have reduced this attenuation. Evidence elsewhere 
(e.g., Ibrahim, 1997) indicates that high-quality load cells effec- 
tively capture minute details such as the presence of a static 
friction peak (e.g., Ibrahim, 1996; P o p p e t  al., 1996) or rate 
dependence (Polycarpou and Soom, 1996). In our system, the 
calculated friction may have caught more complete details over 
the low and high-frequency ranges and also captured the noise 
generated by the air track and possibly the dynamics of the 
mounting. 
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On the Extreme Values of Young's 
Modulus, the Shear Modulus, and 
Poisson's Ratio for Cubic Materials 

M. Hayes  ~ and  A. S h u v a l o v  ~ 

For homogeneous cubic elastic materials with positive definite 
stored energy it is shown that the maximum and minimum values 
o f  Young's  modulus E are related to the maximum and minimum 
values o f  the shear modulus G through the simple connection 

l/Gmin - l/Gmax = 3(1/Emi, - 1/Era,x). 

It  is deduced that the ratio o f  compliances --Si2/S44 is the maxi- 
mum value o f  Poisson 's  ratio u in the cubic materials with a 
posit ive parameter  X ~ 2sjl - 2s12 - s44, and the minimum 
value o f  u in the cubic materials with negative X. 

1 Introduction 

Consider a homogeneous anisotropic elastic material with 
positive definite stored energy in the absence of body forces. 
The response of the material to uniaxial tension T in the direc- 
tion n: t~ = Tninj, (Tconstant ,  n .  n = 1 ), is characterized by 
Young's  modulus E ( n ) .  Indeed, T = E(n)eon in j ,  where e~ are 
the strain components. Similarly, the response to the shear stress 
t U = S(n~mj + njm~), (S constant, n .  n = m .  m = 1, m .  n = 
0),  is characterized by the shear modulus G ( m ;  n)  = G ( n ;  
m) .  In this case S = 2G(m;  n)eom~n j. Poisson's ratio v ( m ;  
n)  is the ratio of  the lateral contraction - e~mimj  along m to 
the longitudinal extension er~nrn~. If the elastic compliances are 
denoted by s~;k~, which are assumed to possess the symmetries 
su~l = sjikt = skl,j = sljtk, then 1 / E ( n )  = sijktninjnknl, 1 / G ( m ;  n)  
= 4Suktnimjnkmt, u ( m ;  n)  = soklm~mjnknt/Spq~snpnqn~n~ (Sirotin 
and Shaskol'skaya, 1982). For anisotropic elastic materials 
Young's  modulus E is a function of direction in the material, 
while the shear modulus G and Poisson's ratio v are functions 
of  a pair of  orthogonal directions. 

In the case of a cubic material there are only three indepen- 
dent compliances, usually denoted by sj~, s~2, $44, where su = 
SiiiI = $2222 = $3333 ~ SI2 = Sl122 = Sl133 = S2233 ~ $44 = 4S2323 = 
4S1313 : 4S1212 (Sirotin and Shaskol'skaya, 1982). Then, 

l 1 
1 / E ( n )  = s12 + 7s44 + 7(2s~ - 2s~2 - s44) 

4 × (n? + n~ + n~), (1) 

1 / G ( m ;  n)  = s44 + 2(2sll  - 2sis s44) 

× (m~n~ + m~n~ + m~n2),  (2) 

Department of Mathematical Physics, University College Dublin, Belfield, 
Dublin 4, Ireland. 

Contributed by the Applied Mechanics Division of The American Society of 
Mechanical Engineers for publication in the ASME Journal of Applied Mechanics. 
Manuscript received by the ASME Applied Mechanics Division, July 30, 1997; 
final revision, May 4, 1998. Associate Technical Editor: M. M. Carroll. 

786 / Vol. 65, SEPTEMBER 1998 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.26. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

Figure 3 illustrates a case that has stick-slip motion. The 
excitation frequency is 3.5 Hz. Due to the presence of stick- 
slip, features of  the friction force are different, especially during 
the transition of sliding to sticking. A 47-Hz transition oscilla- 
tion occurs during the sticking phase. This transition oscillation 
is likely to be caused by the compliance of the contact and its 
surrounding structure (Liang and Feeny, 1998). The averaged 
calculated force of Fig. 3 (c)  and the transducer force shown in 
(d) are consistent with the exception of a slight high-frequency 
noise in the calculated force. 

4 Conclusion 
In this study, we compared friction measurements computed 

from motion sensors with those obtained directly from a load 
cell. While there are high-frequency differences between the 
direct and indirect measurements, the the correlation in the re- 
sults suggests that either method can be trusted for capturing 
the macroscopic friction behavior. This cross reference between 
two measurement techniques reinforces the applicability of the 
more commonly used load-cell technique. The indirect calcula- 
tion measurement is only practical for simple oscillators, which 
may he useful in studying basic phenomena such as friction, 
In more general multi-degree-of-freedom systems, the indirect 
measurement based on measured states is impractical, as the 
number of measurements needed may be arbitrarily large, and 
knowledge of the system equations of motion may be limited. 

Detailed comparisons of these measurement techniques 
showed that, although the load cell registered most of the fric- 
tion dynamics in our system, its high-frequency contents were 
attenuated to some extent. Perhaps a better load-cell mounting 
strategy may have reduced this attenuation. Evidence elsewhere 
(e.g., Ibrahim, 1997) indicates that high-quality load cells effec- 
tively capture minute details such as the presence of a static 
friction peak (e.g., Ibrahim, 1996; P o p p e t  al., 1996) or rate 
dependence (Polycarpou and Soom, 1996). In our system, the 
calculated friction may have caught more complete details over 
the low and high-frequency ranges and also captured the noise 
generated by the air track and possibly the dynamics of the 
mounting. 
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Young's  modulus E is a function of direction in the material, 
while the shear modulus G and Poisson's ratio v are functions 
of  a pair of  orthogonal directions. 
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1 2 2 2 2 
SL2 + ~ ( 2 S l l  - -  2S12 --  s~)(m~n~ + m2n2 + m 3 n 3 )  

v(m; n) = 1 1 s12 + :s44 + ~(2sl, - 2s,2 - s44)(n2 + n~ + nJ) 

(3) 

By virtue of the assumption that the stored energy is positive 
definite it follows (Sirotin and Shaskol'skaya, 1982) that 

s , ,  > Is ,~l ,  s , ,  + 2s12 > 0, s44 > 0. (4) 

For an isotropic material, the combination X, defined by 

X = 2sll - 2s12 - s44, ( 5 )  

is zero, and Young's modulus and the shear modulus are inde- 
pendent of direction(s) and then given by 1/E = S~l, 1/G = 
S44 , //] ~ - - S l 2 / S l l .  

2 Extrema of  Young's  Modulus  and the Shear Mod-  
ulus 

We proceed to determine the maximum and minimum values 
of E ( n )  and G ( m ;  n)  given by Eqs. (1) and (2) .  

Let us note the two identities for the unit orthogonal vectors 
n and m: 

2 2 2 2 2 2 nl 4 + n~ + n~ = 1 - 2 (n tn2  + nln3 + nzn3) 

= ½[1 + (n~ - n~) 2 + (n~ - n~) 2 + (n~ - n23)2], (6) 

m i n t  + men2 + m3n3 1 - (m~n2 + m2n~) 2 

- (mln3 + m3nl) 2 - (m2n3 + m3n2)2]. (7) 

Thus, by (6) ,  the maximum value of (nl  4 + n~ + n~) is 1 and 
its minimum value is (½), taken at n parallel, respectively, to 
(001) and to (111),  where ( . . . )  is the conventional notation 
adopted in crystallography for a set of symmetrically equivalent 
directions defined by the enclosed coordinates of one of them. 

2 2 2 2 By (7) ,  the maximum value of (m~n~ + m2n2 + m3n3) is (½) 
attained when the mutually orthogonal vectors m,  n are parallel 
to (110),  ( -  110) (in arbitrary order), and its minimum value 
is zero, attained at m,  n parallel to (100),  (011) (in arbitrary 
order). 

We denote the maximum and minimum values of E ( n )  by 
Em,~ and Em~,, respectively, and the maximum and minimum 
values of G ( m ;  n)  by G .... and GAin, respectively. 

I f x  > 0, then 

and 

We note 

Also, 

and 

Thus 

l / E m i  n = Sll  , 

1 / E  . . . .  = g(st~ + 2s~2 + s , ) .  

3(1/Emi. - l/Emax) = X" 

BRIEF NOTES 

Emax given by Eqs. (8) and (9) are interchanged as are the 
values of Gmin and G .... given by Eqs. (11 ) and (12).  In any 
case the result (14) is valid. 

3 Extrema of  Poisson's  Ratio 
Similarly, it may be shown that Poisson's ratio u ( m ;  n)  in 

a cubic body with compliances for which X > 0, attains its 
maximum value um~ = -s~2/sN when in ,  n are parallel to 
(100),  (011 ), respectively, so that simultaneously the numera- 
tor in Eq. (3) taken with opposite sign attains its minimum 
value, and the positive denominator attains its maximum value. 
If X < O, then the corresponding interchange of the maximum 
and minimum values of the numerator and denominator yields 
Vmin = - - S l 2 / S l l  for the same directions interchanged. In both 
cases the extreme value - - S t 2 ] S l l ,  by virtue of (4) ,  satisfies the 
inequalities: - 1  < --S12[Si] < 0 with s~2 > O; 0 < -s~2/Sll < 
½ with Sl2 < O. It is seen that these inequalities set bounds for 
possible values of the maximum Poisson's ratio in cubic materi- 
als with X > 0 and of minimum Poisson's ratio in cubic materi- 
als with X < O. 
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A Stress Analysis Method for 
Bi-axially Loaded Fastener 
Hole in Composite Laminate 
of Finite Geometry 

Y. Xiong 1 

A stress analysis method has been developed for  a bi-axially 
(8) loaded fastener hole in a laminated plate o f  finite geometry. 

The method is based on a variational formulation involving 
complex variables. In this method, the equilibrium and compati- 
bility equations are satisfied in the domain of  the plate due to 

(9) the employment o f  the complex stress potentials and all the 
boundary conditions are satisfied through a variational state- 
ment. Therefore, the requirement for  finite width corrections in 

(10) relatively large fastener hole cases is avoided. The method has 
been verified through comparison with finite element results. 

t/GAin = 2(sl l  - s12), (11) 

1/Gm~x = s~. (12) 

1/Gm~. - 1/Gmax = X. (13) 

Hence, using Eqs. (10) and (13),  

1/Gmin - 1/G .... : 3(1/Em~n - 1/Emax). (14) 

Similar considerations apply if X < 0; the values of Emin and 

Introduct ion 
Stress analysis of fastener loaded holes is crucial in the design 

of mechanically fastened joints in composite structures. Exten- 
sive work has been devoted to mechanically fastened composite 
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BRIEF NOTES 

joints but the majority of the work has dealt with unidirectional 
loading conditions, as cited by Oplinger (1996). In most of the 
actual cases, the loading conditions around each fastener hole 
will not be unidirectional. The closed-form analytical ap- 
proaches following Lekhnitskii (1968) have been used to deal 
with single fastener joints under uni-axial loading conditions, 
such as the work by de Jong (1977) and Zhang and Ueng 
(1985). Superposition procedures have to be employed if bi- 
axial loads are considered. In addition, in these analytical ap- 
proaches, an infinite plate assumption is adopted. Another ana- 
lytical work by Mangalgiri and Dattaguru (1986), involving 
complex stress potentials, dealt with the problem of misfit pin 
in an infinite plate under general biaxial loading in which a 
collocation technique was used to satisfy part of the boundary 
conditions. 

The author has recently developed an analytical method to 
analyze multifastener composite joints under a unidirectional 
loading condition (Xiong, 1996). The method is based on 
complex variational formulations involving complex vari- 
ables. The stress and displacement components in the joined 
members are represented using two complex stress potentials. 
The boundary effects are taken into account by the variational 
statement with the stress potentials being used as the trial 
functions. As a result, the approach can be used for composite 
joints with finite geometry without the requirement for a finite 
width correction. 

In this paper, the complex variational approach is extended 
to calculate the stresses around a single fastener hole of finite 
geometry under bi-axial loading conditions. Results of stress 
analyses for a single fastener .joint under bi-axial loads are 
presented along with a comparison to finite element data. 

Statement of Problem 
The problem under study is a rectangular laminated plate of 

length L and width W containing a centrally located hole with 
a radius of a, as shown in Fig. 1. This is a two-dimensional 
problem of an anisotropic plate under bi-axial loads, which are 
generally distributed along its four external edges. These given 
loads are shown in barred symbols in Fig. 1. The central hole 
is subjected to a bearing load by the fastener, which is in equilib- 
rium with the external loads. In addition, the following assump- 
tions are made in the analysis: (i) the pin is infinitely rigid and 
frictionless; (ii) the pin load is in a cosine distribution over one 
half of the hole edge; and (iii) the resultant of all the distributed 
normal loads is located at the mid-span of the respective edges. 
Assumption (i) has been used by numerous investigators and 

7 " t',, -5<z r . .  = 

2. / 2 

4 - - :  L '  >-.~ 

%(xI 

Fig. 1 Geometry configuration of a fastener hole 

Table 1 Stress components around hold edge (Pa) 

N 2 3 4 [ 5 6 
' i~s) = 7.78 7.83 7 . 8 2  7.96 7.97 

(~,)~ -5.03 -5.45 -5.46 -5.40 -5.38 

(r~)~ -0.73 .-0.21 -0.18 0.10 0.I0 

0.67% 

P/(N) 0.217 0.217 0.217 0.217 0.216 

0.68% 0.67% 0.65% 0.06% 

its validity has been assessed by Hyer et al. (1987). Assumption 
(ii) is over simplified for a more orthotropic laminate, which 
is made here in order to ensure that only force boundary condi- 
tions are involved in the problem under consideration. It has 
been realized that the treatment of the pin-hole interaction by 
using displacement boundary conditions (Mangelgiri and Datta- 
quru, 1986) is more appropriate. The last assumption is made 
for simplicity of discussion in this paper. As a matter of fact, 
the edge normal loads can be arbitrarily distributed as long as 
they are in equilibrium with the fastener load. 

A global coordinate system, x-y, is employed which is located 
at the center of the plate. The corresponding stress and displace- 
ment components in the plate are denoted as cry, a,,, ray, U, and 
v, respectively. For the purpose of convenience, a polar system, 
r - 0, is used on the periphery of the hole with the r-axis being 
the outer normal direction and 0 = 0 being the x-direction. 
Using the coordinate transformations, the stress and displace- 
ment components in the polar system can be derived, which are 
denoted as or,., or0, Tr0, U~, and u0, respectively. 

The problem is to find solutions for the stress and displace- 
ment components, which satisfy the equilibrium and compati- 
bility equations in the plate. In addition, the solutions must 
satisfy the boundary conditions along all external and internal 
edges. 

Complex Variational Formulation 
In the theory of the two-dimensional anisotropic elasticity, 

two complex stress potentials, ~p~ and :2,  are employed to derive 
the stress and displacement components. In doing so, the equi- 
librium and compatibility equations are automatically satisfied 
in the domain of the plate. The stress components take the 
following form: 

crx = 2 Re[#~p',(zl) + /-t~p~(z2)] 

cry = 2 Re[~pl(z,) + :~(z2)] 

%v = - 2  Re[#¢p~(z~) + #,Jp~(z2)] (1) 

and the corresponding displacement components are 

u = 2 Re[pl~pl(z]) + p2~P2(z2)], 

v - 2 Re[q:pl(zL) + qz~2(z2)], (2) 

where the conventional notation as used in Section 8, Chapter 
2 of Lekhnitskii (1968) is employed in this paper. 

Since the stress and displacement components expressed in 
terms of the two stress potentials as in Eqs. ( 1 ) and (2) satisfy 
the equilibrium and compatibility equations in the domain of 
the plate, the remaining task is to find appropriate stress poten- 
tials so that the respective boundary conditions can be satisfied. 
To this end, a variational formulation is established below with 
the energy functional written as 

[ I = ~  ~ 1  All ~ + 2A12- -0x0y- -  + A22 
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+ A6{,(-~ + ~ ) 2 } d x d y  J~e g ~ / ( x ) v ( x , - ~ ) d x  

L y)dy + f*'   h(X)V(X __ x f PrAY)U(- ' 

+ f"(e,,,,(Y)U(~-,y)dy+ £O]~o(O)u~(a,O)adO (3) 

where ~ denotes the domain of the plate. It can be shown, after 
cumbersome mathematical manipulations, that the vanishing 
condition of the energy functional in Eq. (3) is equivalent to 
the boundary conditions. That is, the minimization of the energy 
functional results in the correct solution of the problem under 
study. This condition can be written in a variational formulation, 
which involves boundary integrations only, as 

- f i ' ( [ ° - ~ ( L . Y )  ~ h ~ ] 6 u d y + £ 1 1 2  {cr,-(a,0)6u~ 

+ rro(a ,O)&lo}adO + {[o-~(a,O) + ~ro(O)]6u r 

+ r,o(a, O)6uo}a dO - 0. (4) 

Now the problem is to select the appropriate stress potentials, 
~ and ~P2, as the trial functions for the variational formulation 
derived. In this work, a truncated Laurent series with conformal 
mapping is used for the stress potentials, ~p~ and ~p2, as 

~o, = Cm In ~, + ~ (C . ,~ '  + D~,,~i") 
n -  I 

N 
so2 = C20 In ¢2 + E (C2 ,~  + D2,,~2"), (5) 

n I 

where the undetermined constants C,,, Dj,,, C2,,, and D2,, are, 
in general, complex and ~k are the mapping functions as used 
in Section 32, Chapter 6 of Lekhnitskii (1968).  In addition, the 
following single-valued conditions are imposed for the loga- 
rithm terms in Eq. (5) ,  as in Xiong (1996): 

Im(pjCl0 + p2C20) = 0, lm(q,Cl0 + q2C2o) = 0 (6) 

The complex constants in the trial functions are to be deter- 
mined by the variational formulation derived and the number 
of constants in each of the stress potentials is 2N + 1. Once 
these constants are computed, the stress and displacement com- 
ponents can be calculated using Eqs. ( 1 ) and (2) .  

Results and Discussion 
To verify this analytical approach, a single fastener joint of 

finite geometry has been analyzed. The problem is a square 
AS4/3501-6 laminate with a centrally located hole. The plate 
edge length is L = W = 152.4 ram. The mechanical properties 
of each ply are: E11 = 140 GPa, E= = 8.2 GPa, G~2 - 6.2 GPa, 
and ut2 = 0.3. The layer thickness is 0.127 ram, 

In the first case, an analysis is conducted to examine the 
convergence characteristics of the approach by changing the 
number of terms in the stress potentials. The lay-up of the 
laminate considered is quasi-isotropic [45/0 /  45/9015~. The 
radius of the hole is a = 25.4 mm and the four edge loads are 
~4 = 2 Pa, ~tg = 1 Pa, ~gh = 1 Pa, and ~,~ - 2 Pa. The 
calculated peak stress components along the hole edge versus 
N, the number of terms in the series of the stress potentials, are 
presented in Table 1. It is shown that the calculations are stable 
and converged when the total number of terms in each of the 
stress potentials is 1 1 or more. It is also shown in Table 1 that 
the fastener load is relatively insensitive to the number of terms 
in the stress potentials as can be seen from the relative error, 
e, between the calculated fastener load and the exact one which 
is in equilibrium with the external edge loads. 

in the second case, the same joint under bi-axial and bypass 
loads is analyzed. The applied loads in this case are ~,¢ = 0.5 
Pa, ~re = 1 Pa, ~sh = 0.5 Pa, and ~h~. = 2 Pa. The hoop and 
bearing stress distributions along the fastener hole edge are 
shown in Fig. 2. Also shown in the figure are the results from 
a finite element analysis using MSC/NASTRAN with a very 
fine mesh. Good agreement between the analytical results using 
this method and the finite element data was obtained. 

Conclus ions  
An analytical method based on a complex variational formu- 

lation has been developed for the stress analyses of composite 
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laminates containing a single fastener hole. The variational for- 
mulation derived can deal with joints of finite geometry under 
bi-axial and bypass loading conditions without the requirement 
for finite width correction factors. The overall stress distribution 
in the joint as well as the fastener load can be determined. 
Results of example cases discussed have shown the effective- 
ness and accuracy of the complex variational approach devel- 
oped. 
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A Quasi-Decoupling Approach for Nonclassi- 
cal Linear Systems in State Space ~ 

S. M. Shahrnz  2. The authors consider the nonclassical lin- 
ear system represented by 

MY(t) + (G + C)2(t) + (K + F)x( t )  = f ( t ) ,  

x ( 0 )  = x0, ~(0)  = X0, (1) 

for all t ~ 0, where the real n × n matrices M, C, K, G, and 
F incorporate certain properties of the system. According to the 
authors (see [1, Section 7])  "The  quasi-decoupling approach 
is attempted to provide a solution path for general nonclassical 
linear systems in state space." The proposed quasi-decoupling 
approach is as follows: 
• Write the system (1) as 

AS(t) + By(t) = V(t) ,  y(0)  = [x S As] r , (2) 

for all t -> 0, where 

A =  , B =  0 M ' 

y ( t ) =  [ x(t)  = I f ( 0  t) ~ ( t ) ] ,  F(t)  ] .  (3c ,  d) 

• By the QZ algorithm compute the matrices Q and Z such 
that 

QTAZ = R, QTBZ = S, ( 5 ) , ( 6 )  

where R and S are block upper triangular and strict upper trian- 
gular matrices, or vice versa, with m blocks on their diagonals. 
* Apply the linear transformation 

y(t)  = Zz(t),  (7) 

to the system (2) and premultiply the resulting equation by QT 
to obtain 

R~(t) + Sz(t) : F(t) ,  

z(0)  = [zf(O) z~'(0) . . .  z~(O)IT=Z-~y(O) ,  (8) 

for all t > 0, where F( t )  = QTF(t) = [ f i r ( t )  f ~ ( t )  . . .  
f,r,,(t)]r. Finally, write the system (8) as 

By G. Ren and Z. Zheng and published in the Dec. 1997 issue of the ASME 
JOURNAL OF APPLIED MECrtANICS, Vol. 64, pp, 946-950,  
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rii~i(t) + siizi(t) = f i ( t ) ,  initial conditions: z i (0) ,  (9)  

m 

for all t ~ 0, where i = m . . . . .  1 and re( t )  = f~( t )  - E 
k-i+ 1 

(r~gk(t) + S~kZk(t)). Having the sets of equations in (9) ,  the 
authors propose to solve them from the mth (last) set to the 
first set sequentially. Thus, by the proposed technique the vector 
Z(t) [Z~(t) Z~'(t) . .  r z can : . Z m ( t ) ]  be obtained over a 
time interval [0, Ty]. It is certainly true that the proposed tech- 
nique can provide a solution for the system ( 1 ). However, the 
efficacy of the technique is seriously questionable, because of 
the following: 

(i)  There is computational effort to obtain the matrices Q 
and Z that satisfy (5) and (6) .  

(i i)  A set of equations in (9) is not decoupled because for 
an i = 1 . . . . .  m, either r ,  or s, can be a full matrix. Therefore, 
solving a set of equations in (9) is not as convenient as it seems. 
The authors never mention how a set of equations in (9) should 
be solved. It should be solved by direct numerical integration. 
Suppose that the j th  set of equations, 1 -< j -< m, is to be 
solved. On the right-hand side of this set, solutions of the j + 
1st, j + 2nd . . . . .  mth sets of equations, which were obtained 
in pervious steps, as well as their time-derivatives, should be 
first substituted. This means that additional effort should be 
made to compute the time-derivatives of  the previous solutions. 
Moreover, computing these derivatives can be quite inaccurate 
and noisy. Therefore, the computational error can propagate as 
the sets of equations are solved from the last set to the first. 

The authors fail to show that their proposed technique to 
solve linear systems is superior over the existing techniques, 
such as direct numerical integration, in terms of computational 
effort (CPU time).  Computational effort to compute the matri- 
ces Q and Z and to solve the sets of equations in (9) can be 
more than that of direct numerical integration of the system 
( 1 ). With the advent of fast computers, the system (1) can be 
solved efficiently and accurately by direct numerical integration, 
and in particular by parallel integration algorithms when the 
system is large scale (see, e.g., Bennighof and Wu (1991),  
Harichandaran and Ye (1993),  Shieh (19933, and the refer- 
ences therein). 
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Nonlinear Waves in Strings: The Barrage Bal- 
loon Problem 1 

N. D. Cristescu 2. One knows today much more about me- 
chanics of extensible strings than mentioned by the author. Be- 
low I briefly present the early history of the problem. For further 
details see Cristescu, ( 1967, Chapter 4) and Cristescu (1960a), 
where some results, initially published in some other languages, 
are st/mmarized in English. 

The problem of plane motion of a string impacted obliquely 
with a punctual body, moving with constant velocity (i.e., due 
to its big mass the string is unable to reduce the speed of the 
impacting body) was studied by Rakhmatulin (1945). It is 
assumed that during impact the body is in contact with the 
same material point of the string, and that the tension-strain 
relationship is nonlinear. First propagate the longitudinal waves 
and afterwards the transverse shock waves (discontinuities of 
the tangent) (see Fig. 1 reproduced after Rakhmatulin's pa- 
p e r - s e e  also Fig. V.1 from Cristescu (1960a) - -which  is self- 
explanatory). Several other cases have been considered: impact 
without friction when the body slides along the string, rectangu- 
lar impact on the string, oblique impact, etc. Rakhmatulin writes 
also the general differential equations of plane motion of the 
string, and discovers the velocities of propagation (Rakhma- 
tulin; 1947). Plane motion of elastic strings has been considered 
also by Cole et al. (1953), with the strong assumption that 
the displacements are linear functions on spatial and temporal 
coordinates. The oblique impact of elastic strings, assuming 
that the area of transverse cross sections remain constant, was 
considered by Ringleb (1957). A method to determine the con- 
stitutive relation T = T(e) from orthogonal impact of a string 
was proposed by Rakhmatulin and Shapiro (1955). Impact of 
strings by bodies of finite mass was considered by Rakhmatulin 
(1951 ) and Ryabova (1953); thus the string may influence the 
motion of the impacted body. Both the elastic and plastic waves 
are considered. The dynamic unloading from a plastic state is 
also considered. The impact of a string with a wedge of arbitrary 
shape was studied by Rakhmatulin (1952). The motion of the 
string in contact with the surface of the wedge and in free 
motion is examined. The particular shape of the wedge is also 
considered, as well as impact with a circular cylinder. Experi- 
mental results of impact of rubber cables are also reported. 
Impact with a wedge of variable velocity (finite mass), leading 
to a variable impact velocity, was considered by Ryabova 
(1956). Transverse impact of a finite extensible string at mid- 
point was studied experimentally by Smith et al. ( 1956, 1958). 
Both longitudinal and transverse waves are considered, the 
transverse being a shock wave (traveling discontinuity of the 
tangent to the string). Figure 2 reproduced after Smith et al. 
(1956) is self-explanatory. A method was proposed to deter- 
mine from tests the constitutive equation for the material (nylon, 
fortisan, etc.) (Smith et al., 1961). An experimental method to 
determine the velocity of propagation of longitudinal waves was 
developed by Smith et al. (1960). Specific breaking energies for 
various yarns and limiting breaking velocities are discussed by 
Smith et al. ( 1962b, c). An experimental technique of impacting 
yarns with a rifle bullet was developed by Smith et al. (1962a, 
1963) and Fenstermaker and Smith (1965). The effect of the 
air drag on the motion of the yarn was analyzed by Smith et 
al. (1964). 

Transverse impact of strings by bullets and a study of both 
longitudinal and transverse waves have been reported also by 
Petterson et al. (1960), Petterson and Stewart (1960), and 

By J. F. Hall and published in the Mar. 1998 issue of the ASME JOURNAL 
OF APPLIED MECHANICS, Vol. 65, pp. 141-149. 
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Fig. 1 Oblique impact on a string, according to Rakhmatulin (1945) 

Jameson et al. (1962). Smith et al. (1965)arrived experimen- 
tally to the conclusion that during impact with rifle bullets creep 
and stress relaxation are significant. 

The equation of motion in three-dimensions of an extensible 
string, for an arbitrary nonlinear stress-strain relation, finite 
strain, and arbitrary transverse motion are due to Cristescu 
( 1954, 1960b). It is shown that the transverse and longitudinal 
waves propagate with the velocity 

1 T 1 dT 
c 2 -  and c~1- , (1) 

o l + c  o d e  

respectively, where T is the "tension," e the finite strain, 0 the 
initial density, and T = T(c) the nonlinear tension-strain rela- 
tion. It is shown when one wave is propagating faster than the 
other, and when the two velocities are equal. The differential 
relation satisfied along characteristic lines show, in exact mathe- 
matical terms, how the two kinds of waves are influencing each 
other. Examples have been given by numerical integration on 
four characteristic lines: a semi-infinite string with a prescribed 
motion at the end (Cristescu, 1963); the finite string with one 
end fixed and the other end moving following a prescribed law 
(Cristescu, 1964); the problem of a finite extensible cable used 
to brake high-speed moving bodies (Cristescu, 1965a); and the 
motion of two bodies of distinct mass and moving initially with 
distinct velocities, connected by an extensible cable (Cristescu, 
1965b). 

The general three-dimensional equation of motion of extensi- 
ble strings satisfying a constitutive equation of rate type of the 
form 

Oe OT + 
Ot = g(T,  ~) -~t U(T, e) (2) 

was also studied by Cristescu (1965c). This time there are five 
characteristic curves. The particular cases of (2) were consid- 
ered. Manacorda (1958) has studied a certain rate influence and 
temperature changes on the motion of the string. Dinca (1967) 
has also considered the temperature influence on the dynamics 
of extensible strings which move in a resistive medium, for a 
tension-strain-temperature relationship written in finite form. 

Transverse shock waves (traveling "kinks" ) have also been 
theoretically studied. For plane motion let us mention Rakhma- 
tulin and Demianov ( 1961 ), P6r~s (1953), Craggs (1954), and 
Pavlenko (1959). The three-dimensional motion was analyzed 
by Cristescu et al. (1966) where the general jump conditions 
have been given, (see also Cristescu (1967)). The velocities 
of propagation are now 

Fig. 2 Typical configuration of a yarn specimen after transverse impact, 
according to Smith et al. (1956) 
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c ~ -  ~ and c~t -  1 [T] (3) 
0(1 + ~) 0 [c] 

where the brackets stand for "jump." Formula (3)~ was ob- 
tained for elastic strings by Cristescu ( 1951; see also Cristescu, 
1967) and by Pdr~s (1953) for general extensible strings. The 
cases when shock wave coincides or not with smooth waves 
was also discussed. The propagation of transverse shock waves 
in inextensible strings was studied using functional analysis by 
Moisil (1956).  

All the above-mentioned results, as well as many other ones, 
are presented in Chapter 4 (pp. 181-291 ) of the book by Crist- 
escu (1967).  Thus, problems of the kind considered by the 
author, as well as much more general ones, concerning the 
mechanics of extensible strings (with nonlinear tension-strain 
relationship, finite strains, and arbitrary transverse motion), 
have been considered for a long time. 

A "geographical" erratum: the Ploesti Oil Refinery men- 
tioned by the author, is located in the town Ploesti which is not 
a town in Hungary, but in Romania. 

References  
Cole, J. D., Dougherty, C. B., and Huth, H.J. ,  1953, ASME JOURNAL O~ AP- 

PLmD MECHANICS, Vol. 20, pp. 519-522.  
Craggs, J. W., 1954, "Wave Motion in Plastic-Elastic Strings," J. Mech. Phys. 

Solids, Vol. 2, pp. 286-295.  
Cristescu, N., 1951, "Discontinuities in the motion of perfectly flexible elastic 

strings," Com. Acad. R.P.R., Vol. 1, pp. 439-445  (in Romanian). 
Cristescu, N., 1954, "About  the Loading and Unloading Waves which Can 

Appear in the Motion of elastic or plastic flexible strings," Prikl. Mat. Mekh., 
Vol. 18, pp. 257-264  (in Russian). 

Cristescu, N., 1960a, "European Contributions to Dynamic Loading and Plastic 
Waves," Proc. Second Syrup. On Naval Structm~l Mechanics--Plasticity, Brown 
University, Pergamon Press, New York, pp. 385-442.  

Cristescu, N., 1960b, "Elastic-Plastic Waves in Strings," Arch. Mech. Stos., 
Vol. 12, pp. 597-615.  

Cristescu, N., 1963, "Loading waves in transverse motion of extensible 
strings," Arch. Mech. Stos., Vol. 15, pp. 47-61 .  

Cristescu, N., 1964, "Impact with variable velocity of a finite string," lnj .  
Journal Vol. 4, pp. 140-147 (in Russian). 

Cristescu, N., 1965a, "The braking of high speed moving bodies by extensible 
strings," Proc. Of  the Fourth Intern. Congr. On Rheology, Part 3, Brown Univer- 
sity 1963, John Wiley and Sons, New York, pp. 59-78.  

Cristescu, N., 1965b, "Le  mouvement de deux corps li6s par un c.able elas- 
tique," Journal de Mdcanique, Vol. 4, pp. 151-160. 

Cristescu, N., 1965c, "Loading/unloading criteria for rate sensitive materials," 
Arch. Mech. Stos., Vol. t7, pp. 291-305.  

Cristescu, N., Dinca, G., and Suliciu, I., 1966, "On  the propagation of shock 
waves in extensible strings," Analele Univ. Bucuresti, Seria Stiint. Naturii, Vol. 
15, pp. 65-73.  

Cristescu, N., 1967, Dynamic Plasticity, John Wiley and Sons, New York. 
Dinca, G., 1967, Studii Cercetari Matematice, Vol. 19, pp. 659-680.  
Fenstermaker, C. A., and Smith, J. C., 1965, Appl. Polymer Symposia, Vol. 1, 

pp. 125-146. 
Jameson, J. W., Stewart, G. M., Petterson, D. R., and Odell, F. A., 1962, Textile 

Res. J., Vol. 32, pp. 858-860.  
Manacorda, T., 1958, Riv. Mat. Univ. Parma, Vol. 9, pp. 13-19.  
Moisil, Gr. C., 1956, "Shock waves in a cable," The 9th Intern Congr. Appl. 

Mech., Bruxelles. 
Pavlenko, A.L. ,  1959, " O n  the Propagation of Perturbations in a Flexible 

String," Izv. Akad. Nauk, SSSR, Otd. Tekh. Nauk, Mekh. 1 Mash., No. 4, pp. 112-  
122 (in Russian). 

P6r6s, J., 1953, Mdcanique gdndrale, Masson, Paris. 
Petterson, D. R., and Stewart, G. M., 1960, Textile Res. J., Vol. 30, pp. 422 

431. 
Petterson, D. R., Stewart, G. M., Odell, F. A., and Maheux, R. C., 1960, Textile 

Res. J., Vol. 30, pp. 411-421.  
Rakhmatulin, H. A., 1945, "Oblique Shock with a Great Velocity on a Flexible 

String in Presence of Friction," Prikl. Mat. Mekh., Vol. 9, pp. 449-462  (in 
Russian). 

Rakhmatulin, H.A. ,  1947, "On  the Shock of a Flexible String," Prikl. Mat. 
Mekh, Vol. 11, pp. 379-382  (in Russian). 

Rakhmatulin, H.A. ,  1951, "Transverse Shock with Variable Velocity on a 
Flexible String," Uch. Zap. Moskovsk gos. Univ., Vol. 4, p. 154 (in Russian). 

Rakhmatulin, H. A,, 1952, "Transverse Shock of a Flexible String by a Body 
of a Given Shape," Prikl. Mat. Mekh., Vol. 16, pp. 2 3 - 3 4  (in Russian). 

Rakhmatulin, H. A., and Shapiro, G. S. 1955, "The Propagation of Perturba- 
tions in Nonlinear Elastic and Non-elastic Media," lzv. Akad. Nauk SSSR, Otd. 
Tekh. Nauk, No. 2, pp. 6 8 - 8 9  (in Russian). 

Rakhmatulin, H. A., and Demianov, Yu. A., 1961, So~ngth under intensive 
momentary loads, Moscow (in Russian). 

Ringleb, F. O., 1957, ASME JOURNAL OF APPLIED MECHANICS, Vol. 24, pp. 
417-425.  

Ryabova, E. B., 1953, "Transverse Shock with Variable Velocity on a Flexible 
String," Vestnik Moskovsk. Univ., No. lfl, pp. 8 5 - 9 l  (in Russian). 

Ryabowl, E. B., 1956, "The Problems of the Shock of a Wedge by a String," 
Vesmik Moskovsk. Univ., No. I, pp. 5 7 - 6 2  (in Russian). 

Smith, J. C., McCrackin, F. L., Schiefer, H. F., Stone, W. K., and Towne, K. M., 
1956, J. Res. Nat. But'. Std, Vol. 57, pp. 83-89.  

Smith, J .C.,  McCrackin, F.L. ,  and Schiefer, H.F.,  1958, J. Res. Nat. Bur'. 
Std., Vol. 60, pp. 517-534.  

Smith, J. C., Blandford, J. M., and Schiefer, H. F., 1960, Textile Res. ,1., Vol. 
30, pp. 752-760.  

Smith, J. C., Shouse, P. J., Blandford, J, M., and Towne, K. M., 1961, Textile 
Res. J. Vol. 30, pp. 721-734.  

Smith, J. C., Fenstermaker, C.A.,  and Shouse, P.J. ,  1962a, "Behaviour of 
filamentous materials subjected to high-speed tensile impact," Proc. Syrup. On 
Dynamic behaviour of  materials (Special Techn. Pnbl., No. 336), pp. 47 69. 

Smith, J. C., Blandford, J. M., Shouse, P. J., and Towne, K. M., 1962b, Textile 
Res. J. Vol. 32, pp. 472-480.  

Smith, J. C., Blandford, J. M., Shouse, P. J., and Towne, K. M., 1962c, Textile 
Res. J. Vol. 32, pp. 67-76.  

Smith, J. C., Fenstermaker, C. A., and Shouse, P. J., 1963, Textile Res. J., Vol. 
33, pp. 919-934.  

Smith, J.C.,  Fenstermaker, C. A., and Shouse, P.J.,  1964, J. Res. Nat. Bur'. 
Std., Vol. 68, pp. 177-181. 

Smith, J. C., Fenstermaker, C. A., and Shouse, P. J., 1965, Textile Res. J., Vol. 
35, p. 743. 

A u t h o r ' s  Closure  3 

In addition to thanking Professor Cristescu for his detailed 
early history of nonlinear string dynamics, the author would 
like to make a few comments regarding the role of the discussed 
paper. There were two purposes as stated in the Introduction. 
One was to describe an historically significant solution to the 
bah'age balloon problem by George Housner, which may have 
been the first generalization of linear string theory to account 
for transverse waves of nonsmall slope. Housner's work in 1943 
predates the references listed by Cristescu, including the one in 
1945 by Rakhmatulin and the one from 1957 by Ringleb (which 
refers to and extends a 1948 then-classified Navy report by the 
same author) which dealt with the same mathematical problem. 
The application of Ringleb's work was to cables used as break- 
ing devices for aircraft landing on ships. 

The other purpose of the paper was to present some analytical 
solutions for the dynamics of strings of nonsmall slope which 
describe specific situations encountered in finite strings, such 
as reflections of transverse waves at a support and interaction 
between longitudinal and transverse waves. These solutions, 
which are limited to small strains, are used to investigate the 
limits of geometrically linear theory, 4 to gain insight into the 
wave mechanics, 5 and to extend Housner's analysis of the bar- 
rage balloon problem. In addition, the standard mass-spring 
model used in the paper to generate numerical solutions is a 
convenient alternative to the method of integrating along char- 
acteristic lines mentioned by Cristescu. The mass-spring tech- 
nique can also easily accommodate the various generalizations 
described by Cristescu such as finite strains, plasticity, and inter- 
action with bodies of finite mass. 

3 j. F. Hall, Professor, Department of Civil Engineering, Division of Engi- 
neering and Applied Science, California Institute of Science, Mail Code 104-44, 
Pasadena, CA 9.1125. 

4 An example result from the paper shows that a transverse wave with a slope 
angle of only six degrees which is travelling in a string with a longitudinal strain 
of 0.01 percent doubles this strain upon reflection at a fixed support. Linear theory 
predicts no change in the tension. 

5 For example, the paper shows how a longitudinal wave which meets a travel- 
ling kink (a wavefi'ont for a transverse wave) undergoes partial reflection and 
transmission and also divides the kink into two kinks which then move apart. 
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c ~ -  ~ and c~t -  1 [T] (3) 
0(1 + ~) 0 [c] 

where the brackets stand for "jump." Formula (3)~ was ob- 
tained for elastic strings by Cristescu ( 1951; see also Cristescu, 
1967) and by Pdr~s (1953) for general extensible strings. The 
cases when shock wave coincides or not with smooth waves 
was also discussed. The propagation of transverse shock waves 
in inextensible strings was studied using functional analysis by 
Moisil (1956).  

All the above-mentioned results, as well as many other ones, 
are presented in Chapter 4 (pp. 181-291 ) of the book by Crist- 
escu (1967).  Thus, problems of the kind considered by the 
author, as well as much more general ones, concerning the 
mechanics of extensible strings (with nonlinear tension-strain 
relationship, finite strains, and arbitrary transverse motion), 
have been considered for a long time. 

A "geographical" erratum: the Ploesti Oil Refinery men- 
tioned by the author, is located in the town Ploesti which is not 
a town in Hungary, but in Romania. 
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